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The conventional means of flood simulation and prediction using conceptual hydrological model or

artificial neural network (ANN) has provided promising results in recent years. However, it is usually

difficult to obtain ideal flood reproducing due to the structure of hydrological model. Back propagation

(BP) algorithm of ANN may also reach local optimum when training nodal weights. To improve the

linear simulation accuracy and generality. In addition, genetic algorithm is integrated with WANN

(GAWANN) to avoid reaching local optimum. Meanwhile, Message Passing Interface (MPI) subroutines

are introduced for distributed implement considering the time consumption during nodal weights

training. The GAWANN was applied in the flood simulation and prediction in arid area. The test results

of 4 independent cases were compared to reveal the relations between historical rainfall and runoff

under different time lags. The simulation was also carried out with Xinanjiang model to demonstrate

the capability of GAWANN. The numerical experiments in this paper indicated that the parallel

GAWANN has strong capability of rain-runoff mapping as well as computational efficiency and is

suitable for applications of flood simulation in arid areas.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Flood simulation and prediction is one of the most active
researching areas in surface water hydrology. Flood takes place
whenever there is a heavy or a long period of precipitation. An
accurate prediction of flood under changeable meteorological and
layer conditions can not only help in the water resources manage-
ment especially in hydropower, but also reduce the loss of lives
and property to the minimum in floodplain areas. While with the
fast increasing economic activities in floodplain and rivers espe-
cially in arid areas in northeast China, further requirements are
raised on more accurate flood prediction precision.

The actual rain-runoff (RR) process is such a non-linear
problem as until now no explicit formula can describe the process
perfectly. During the last decades, great progress in flood predic-
tion has been made by taking several techniques such as empiri-
cal model, statistical model, and physical based conceptual or
distributed hydrological model into account. Empirical models
can provide hydrograph in a special basin but long time series of
observations are badly needed before carrying out simulation [1].
ll rights reserved.
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Besides, empirical methods are always not capable of generating a
runoff hydrograph with complete information on timing of peak.
Physical based hydrological model are more popular since the fast
development in computer science and technology in the 1940s
[2–5]. Newly developing spatial technology like remote sensing
(RS) can also support physical based models by providing large
sets of spatial data such as leaf area index (LAI) and land use
category, even soil moisture [6–8]. On the other hand, hydro-
logical models commonly used in flood prediction can be divided
into two categories, i.e. conceptual and distributed model. Devel-
oped by Zhao [9–11], Xinanjiang model is a most widely accepted
conceptual lumped hydrological model that performs in flood
simulation especially suitable in wet areas. The model was
conceptualized to divide the runoff into surface and ground flow
using Horton’s theory [12]. Lin et al. [13,14] coupled Xinanjiang
model and meteorological system in flood prediction of Huaihe
River Basin. Compared to distributed hydrological models, less
data inputs are needed in conceptual model. Inputs of such
conceptual model are mainly about precipitation, evapotranspira-
tion, etc. Researches on distributed hydrological models that
started in the 1960s have been applied in many major basins
around the world due to its strong power in taking the under-
layer viabilities into consideration [15]. Braud et al. analyzed the
flash flood event using two distributed hydrological model: CVN
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Fig. 1. (a) General architecture of a three-layer feed forward artificial neural

network and (b) single neuron calculation of a three-layer feed forward artificial

neural network.
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and MARINE. Different terms of the two models are discussed in
the peak discharges [16]. Results of such models are generally
ideal; however many of them involve ecology, atmosphere,
human activities, and can also be affected by basic science
including physics, bio-process, or chemistry. Others may differ
or orient for various simulation purposes [17]. On the other hand,
physics based models need a great number of spatial and obser-
vation data as inputs to implement simulation and calibration
including temperature, wind speed, sunshine hour, etc.

Compared to the aforementioned methods, black-box models,
artificial neutral network (ANN), have the advantage of fast data
fitting and have became the preferred approach since its devel-
opment in the 1980s. Ju et al. [18] employ division-based back-
propagation neural networks in rainfall–runoff simulation and
compared with the Xinanjiang conceptual RR hydrological model.
Ahmad et al. [19] adopted ANN model for prediction peak flow in
Red River timing and shape of runoff hydrograph together with
the employment of meteorological parameters including ante-
cedent precipitation index and melt index.

In addition to the application using ANN issues above, many
improvements have also been made to strengthen the perfor-
mance of ANN. This includes integrating data preprocessing
techniques with ANN, such as moving average (MA) and singular
spectrum analysis (SSA) [20]. The coupled ANN has the ability to
get rid of the effects of white noise that may add errors to the
weights training. For another instance, in order to improve the
drawbacks of the conventional optimal process, Chen and Chang
[21] proposed a novel evolutionary artificial neural network
(EANN) for time series forecasting.

In flood prediction, however, a much higher runoff time series
forecasting accuracy is often requested. Besides, the forecasting
ability, especially the forecasting interval length, is also a sig-
nificant criterion to be taken into consideration. In this paper, an
ANN model hybrid wavelet function was proposed and applied
in the simulation and prediction process of flood period in Nen
River Basin of China. The nodal weight training of ANN model
was improved by the hybrid of parallel genetic algorithm to reach
global optimal before carrying out BP at the last iteration.
Forecasting ability was then further discussed by taking three
different prediction solutions. The objective of this study lies
in (1) developing wavelet artificial neural networks and their
applications to flood simulation in arid floodplain of Northern
China and (2) enhancing the computational efficiency of GAWANN
using MPI technique.

The remaining paper outlines a framework for developing a
flood prediction system using genetic algorithm hybrid back
propagation wavelet neutral networks and can be organized as
follows. Section 2 gives a brief introduction to the WANN and the
improvements done by integrating genetic algorithm with MPI
technology. Section 3 follows the study case with data preproces-
sing. Results of different prediction solutions were drawn with
further discussions and comparisons in Section 4. Meanwhile
simulation results of the Xinanjiang model were also used as a
comparison to GAWANN. In the last section, conclusion and
remarks are summarized.
2. Methodology

2.1. Back propagation artificial neural networks

As RR is an incidental, non-linear process and always affected
by the variation of under-layer conditions, it is difficult to derive a
single accurate formula to describe all the physical processes.
Artificial neural networks (ANN), belonging to the class of black-
box models, can be explored in RR simulation as alternative due
to its strong non-linear mapping capability. ANN model is able to
learn the underlying relationship between input and output
signals of a sequential process with no need to take explicit
physical rules into consideration. The training process of ANN is
to reach optimal nodal weights. Back Propagation (BP) neural
networks are multilayer feed forward networks, which can be
trained with the error back propagation learning algorithm.
Three-layer structural neural networks containing an input layer,
hidden layer, and output layer are currently the most popular and
widely adopted neural network pattern. The three-layer linear
neural network has its connection neurons between the input and
output layer units. Fig. 1(a) is a general architectural description
of a three-layer feed forward ANN model with multi-inputs and
multi-outputs, which contains only one hidden layer. As shown in
Fig. 1(b), neuron p describes the function of biological neuron that
is weighting, summation from mapping the inputs to the hidden
layer, and the transition to give the output.

P
p is the summation

of xi multiplied with the weight wi:X
p

¼
X

wixiþbj ð1Þ

The output neuron yi is the mapping of
P

p using f(n)
transformation, which is often a monotonic increasing and
bounded function, that is

yi ¼ f
X

p

 !
ð2Þ

Back propagation algorithm is a widely accepted algorithm in
training ANN models. The forward propagation of weight training
in ANN will produce simulated results through mapping inputs
and outputs, and then the error signal between simulation
and observation is back propagated to each neuron to execute
gradient descent neuron weight modification in the weight
vector space. The weight vectors that reach the minimum value
of error function in the network will be adopted after a group of
iteration.

2.2. Wavelet function

Although BP neural networks have the advantages of strong
non-linear mapping, accuracy and better generality, there may
still exist some disadvantages such as dropping into local mini-
mum easily and slow convergence speed. However, it is a
worthwhile attempt to transform the traditional BP neural
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networks into wavelet neural networks. The major advantages of
employing wavelet base function lies in its excellent performance
in non-stationary signal analysis and non-linear mapping [22].
According to the wavelet transformation theory, assume that
function CAL2ðRÞ follows the formula below:

CC ¼

Z
9CF ðoÞ9

2

9o9
doo1 ð3Þ

In Eq. (3), Cc is the admissibility constant and CF is the Fourier
transform of C.

The wavelet function follows the following form:

ci ¼ 9ai9
�ð1=2ÞC

x�bi

ai

� �
, ai,biAR; iAZ ð4Þ

In Eq. (4), ci is a sub-function from C(x), where ai is the scalar
parameter while bi is the translation parameter. Then output of
the wavelet neural network yi can be described as the formula
given below:

yi ¼ f
Xp

j ¼ 1

oij

Xm

k ¼ 1

xkðtÞc
t�bj

aj

� �" #2
4

3
5, i¼ 1,2,. . .,n ð5Þ

where f is the sigmoid transition function, c is the wavelet
function, xk denotes the kth input, yi denotes the ith output,
p represents the number of neurons, and oij is the weight
between the hidden layer and the output layer. In this study,
the Morlet wavelet function was used as the transformation
function in wavelet neural networks.

2.3. Nodal weights training with parallelized genetic algorithm

Back propagation training algorithm has advantages of fast
convergence and higher accuracy in reaching the optimal
criterion. However, back propagation algorithm may have the
problem of dropping in local optimum [21]. Such problem of BP
algorithm can be solved by integrating genetic algorithm (GA).
The genetic algorithm was first proposed by Holland based on
Darwin’s evolutionary concept [23]. GA has the abilities of global
searching, evolutionary adaption properties and can be used as a
supplement to help avoiding the insufficient WANN in global
optimum searching. GA regards the nodal weights of artificial
neural networks as natural evolutionary spices and chromosome
in each individual transfers through crossover, mutation to
simulate the evolutionary process. Through such a way the
training process of the WANN nodal weights can be explained
as the evolutionary process of each individual, achieving the
better adaptation under certain environment.

GA used in the application of neural network weights training
has been widely explored in the last decades and has been
successfully carried out as applications referred in many papers
[24–26]. But modeling a RR process with WANN model always
demands a WANN structure as complicated as the numbers of
factors influencing the RR process increase. As a result, a higher
number of nodes in WANN model might be requested to avoid
bad accuracy and the population size of GA should be correspond-
ingly enlarged to get a uniformly distributed initialization. More-
over, short time step in flood simulation with WANN involves
large metrological and runoff observation data leading to a long
time in weight training process.

Fortunately, in recent years, the fast development of comput-
ing technologies offers the possibility of solving optimization
problem that is high-dimensional [27], especially in Fortran MPI
distributed computer system using the power of multiple pro-
cessors. Parallel computing, however, has not been widely spread
in the field in training nodal weights using evolutionary algo-
rithm. In this study, a parallel computing implementation of
genetic algorithm for global optimum searching on WANN
weights training was proposed to speed up the training process.
A detailed description of the method is given below and can be
illustrated in Fig. 2.
(1)
 MPI initialization:
Count the total number of processors (NW) in the MPI
communication world and select Nþ1 processors in the
communication world to form a processor group in which
only one processor is selected as the master node and the rest
N processors are labeled as the slave nodes. Then transfer all
selected processor groups into a sub-communication world
SW where data packages can be sent and received.
(2)
 Population initialization:
Master—Sample S combinations {a1,a2yaS} using Latin
Hypercube sampler [28] while aS is an array vector of nodal
weights that are sequentially arranged. Pack a subset of S and
send the package to the slaves in the communication world.
Then collect and unpack the evaluated value objective func-
tion sent back by the slaves as packages.
Slaves—Receive the package of nodal weights from the
Master. Unpack and evaluate the WANN model before send-
ing the packed results back to the Master.
(3)
 Individual ranking:
Master—Sort the S individuals in the order of increasing
evaluation values and store the individuals as parent candi-
dates (Ic).
(4)
 Parent selection:
Master—Select the parents for reproduction to generate off-
springs. A binary tournament selection method is used in the
selection. The number of selected individuals from parent
candidates is defined as Ip.
(5)
 Crossover and mutation:
Master—The real-coded genetic algorithm adopts simulated
binary crossover (SBX) method [29] using crossover prob-
ability pc. The mutation was operated using the polynomial
mutation method [29,30] and the mutation probability in this
paper is set to a constant pm. The new individuals (In) can
be the total individuals generated through crossover and
mutation operator.
(6)
 Evaluation on new individuals:
Master—Divide the new In individuals into subsets familiar to
step (2), pack and send them to slaves. Wait and receive the
result packages from slaves.
Slave—Receive the package of unevaluated individuals from
the master, unpack and evaluate the WANN model before
packing and return the results finally.
(7)
 Off-spring selection:
Master—The off-spring is a combination of new individuals
chosen from the current generation. The size of the off-spring
may exceed the size of the population S. Sort the off-spring
with increasing objective values and the best S off-spring can
be selected as the new generation.
(8)
 Check iteration:
Master—If the current iteration exceeds the maximum itera-
tion number, stop, carry on the BP algorithm. Otherwise
return to step (4).
(9)
 Back propagation
After the maximum iteration has been achieved retrain the
WANN again with back propagation algorithm using initial
weights of the selected best individual from the population of
the last GA iteration.
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Fig. 2. Flowchart of a parallelized implement of GA algorithm. The master node implement most algorithmic steps, the slave nodes evaluate the WANN model with weight

vectors sent from the master.
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The GA algorithm is implemented using the MPI parallel
technology. The platform of MPICH2 was developed by national
laboratory, which can be downloaded from the website freely
(http://www.mcs.anl.gov/research/projects/mpich2/). The detailed
explanations on how to use parallel functions of MPI, if interested,
should be further explored in the manual by users. In this study,

http://www.mcs.anl.gov/research/projects/mpich2/
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only a few most important MPI subroutines involved are used to
realize the communication between nodes of the Master and the
Slaves:
(1)
 MPI_Send ( ): send packaged individuals containing nodal
weights to slaves or packaged results of objectives evaluated
by the slaves are sent back;
(2)
 MPI_Get_Elements ( ): to get the size of packages; and

(3)
 MPI_Recv ( ): to receive the packages from the senders.
3. Application

3.1. Study area

Nen River basin is one of the largest basins located in the
northeast of China. The study area, Taonan sub-basin, is the upper

area of the Taonan hydrological station on the left part of Nen

River basin, as shown in Fig. 3. It is relatively flat on the right part

of Taonan sub-basin topologically while quite undulating on the

opposite side. The total area of Taonan sub-basin is approximately

counted up to 28,452 square kilometers. Taonan sub-basin can be
divided into 3 catchments (catchment boundary with violet dash
shown in Fig. 3) according to the 3 hydrological station consid-
ered that are Taonan, Zhenxi, and Chaersen station. The purpose
of the spatial division of the Taonan sub-basin into catchments is
to take full advantage of runoff data from each hydrological
station and verify the applicability of the GAWANN model. While
there scattered totally 36 rainfall stations within the boundary of
study area shown in Fig. 3.

3.2. Data preprocessing

The Taonan sub-basin is characterized with arid in winter and
rainy in summer. Thus in flood prediction, we carry out simula-
tion only in the flood season from month 6 to 9 yearly. The year
Fig. 3. Study area: Taonan sub-basin locate
1998 has the heaviest accumulative rainfall amount during flood
season in history. It is recorded (the rainfall records from the
rainfall stations scattered on the Taonan sub-basin shown in
Fig. 3) that the heaviest precipitation in flood season in 1998
reached at 51.45 mm and the maximum discharge at Taonan
hydrological station is 1870 m3/s. Thus the simulation input data
of year 1998 should be included in GAWANN simulation as the
more the extreme historical conditions included in the simulation
the more the accuracy it can reproduce in prediction. Hence, the
rainfall, stream flow data of 6-h time step for a 14-year period is
used in this study. The data from year 1994 to 1998 is then
selected for neutral network training while the rest are used for
validation.

The observed rainfall data from rainfall station is point
representative and when used on catchment scale, the data
should be properly interpolated onto the catchments. In terms
of the minimum distance interpolation, the Thiessen polygon [31]
method is adopted in the interpolation, which is simple, accurate,
and computationally time saving. The areal rainfall amount of the
catchment can then be obtained by calculating the areal weighted
rainfall in terms of the area of the Thiessen polygon within the
catchment boundary (shown in Fig. 4).

Another important factor of flood prediction is the evapotran-
spiration in the catchment. In many research reports, the Penman
equation is widely used [32] to calculate areal evapotranspiration
(ET). The ET can be described as a function of solar radiation, leaf
area index, wind speed, etc. But in this study, the Julian date is
adopted to represent the complicated factors of ET because ET in a
year changes regularly. As the GAWANN is a black-box model, it
does not matter that the Julian date can be used as a replacement
of the actual ET.

The data in simulation should be normalized to a specific
range as white noise often exits in the time series. The range we
chose here is between (0, 1), and the normalization formula can
be expressed as

PðiÞ ¼ ðpðiÞ�PminÞ=ðPmax�PminÞ ð6Þ
d in the upstream of Nen River Basin.
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where P(i) is the normalized ith element in time series vector p,
Pmin, and Pmax are the minimum and the maximum value of
vector p, respectively.

3.3. Model structure

Runoff time series has strong autocorrelation as runoff is a
kind of wave process and the lag factor has strong effects on the
Table 1
Simulation and validation results of GAWNN, where Ess,i and CEss,i represent the summed

Esp,i and CEsp,i represent the summed RMSE and mean CE value of all cases of the tim

3¼Taonan.), respectively.

Case Input Output Simulation

Ess,1 (%) Ess,2 (%) Ess,3 (%) CE

1 Qt�1 ,. . .,Qt�2 ,Pt�1 ,. . .,Pt�3 Qt 0.38 1.05 2.69 0.

Qt,Qtþ1 0.54 4.51 1.59 0.

Qt ,. . .,Qtþ2 0.86 7.96 2.13 0.

Qt ,. . .,Qtþ3 0.48 4.00 2.68 0.

Qt ,. . .,Qtþ4 0.51 3.67 3.80 0.

Qt ,. . .,Qtþ5 1.45 4.28 7.57 0.

Qt ,. . .,Qtþ6 3.58 5.95 6.84 0.

Qt ,. . .,Qtþ7 5.93 5.79 10.84 0.

2 Qt�1 ,. . .,Qt�3 ,Pt�1 ,. . .,Pt�4 Qt 0.34 0.84 1.57 0.

Qt,Qtþ1 0.94 1.17 1.79 0.

Qt ,. . .,Qtþ2 0.92 2.36 1.87 0.

Qt ,. . .,Qtþ3 0.89 3.18 2.14 0.

Qt ,. . .,Qtþ4 1.25 5.58 2.37 0.

Qt ,. . .,Qtþ5 1.15 6.22 3.03 0.

Qt ,. . .,Qtþ6 2.55 7.38 3.24 0.

Qt ,. . .,Qtþ7 1.96 8.11 5.56 0.

3 Qt�1 ,. . .,Qt�4 ,Pt�1 ,. . .,Pt�5 Qt 0.31 11.71 6.89 0.

Qt,Qtþ1 0.87 7.55 10.38 0.

Qt ,. . .,Qtþ2 1.92 8.47 9.42 0.

Qt ,. . .,Qtþ3 3.95 9.28 17.62 0.

Qt ,. . .,Qtþ4 3.12 11.72 19.62 0.

Qt ,. . .,Qtþ5 2.19 16.56 25.54 0.

Qt ,. . .,Qtþ6 4.23 22.76 24.11 0.

Qt ,. . .,Qtþ7 3.34 32.45 29.36 0.

4 Qt�1 ,. . .,Qt�5 ,Pt�1 ,. . .,Pt�6 Qt 0.92 14.97 6.26 0.

Qt,Qtþ1 0.95 18.88 17.76 0.

Qt ,. . .,Qtþ2 0.96 22.79 40.43 0.

Qt ,. . .,Qtþ3 1.87 19.35 29.80 0.

Qt ,. . .,Qtþ4 3.57 25.45 21.96 0.

Qt ,. . .,Qtþ5 2.54 28.99 35.71 0.

Qt ,. . .,Qtþ6 4.42 28.54 44.51 0.

Qt ,. . .,Qtþ7 5.59 34.87 50.31 0.

All the test values in Table 1 are selected as the best result of 10 independent trials.

Fig. 4. Thiessen polygon on each catchment division of Taonan sub-basin.
runoff process. Therefore, it is necessary to select a proper
sequential number of time series to describe the time lag in
catchment routing. Also the rainfall is critical in runoff generation
and may affect the hydrograph at the hydrological station near
the catchment outlet. As a result, in terms of the times series
theory, the runoff (Qi, Qiþ1, y,QiþN) at a hydrological station can
be written as below:

ðQi, Qiþ1, . . ., QiþNÞ ¼ f ðQi�1, Qi�2, . . ., Qi�n, Pi�1, Pi�2, . . ., Pi�n, JiÞ

ð7Þ

In formula (7), (Qi,Qiþ1,y,QiþN) represents the output runoff
vector containing N days after Qi, Qi�n is the runoff at interval
i�n, Pi�n is the precipitation amount at interval i�n, and Ji is the
Julian date at interval i.

The optimal network structure was determined by taking
trials, and the result with higher accuracy of training and
validation results were preferred. In this essay, only one hidden
layer in GAWANN was considered and the number of nodes in
hidden layer was set to Nnþ2, where Nn is the number of
inputs. The structure of GAWANN can be three-layer forward
neural networks with Nn inputs, Nnþ2 nodes, and Nþ1
outputs.

3.4. Termination criterion

Error criterion in nodal training is the summation of the
root mean square errors (RMSE), which are the square errors
RMSE and the mean CE values of all the cases of time lags during simulation, while

e lags during validation (i is the catchment index: 1¼Chaersen, 2¼Zhenxi. and

Validation

ss,1 CEss,2 CEss,3 Esp,1 (%) Esp,2 (%) Esp,3 (%) CEsp,1 CEsp,1 CEsp,1

99 0.99 0.98 0.88 12.51 24.40 0.95 0.77 0.88

98 0.96 0.99 0.62 28.22 22.39 0.91 0.69 0.82

96 0.86 0.97 0.76 39.86 26.33 0.87 0.55 0.78

98 0.93 0.97 2.87 29.62 31.40 0.88 0.61 0.73

98 0.94 0.97 5.22 27.99 40.13 0.85 0.57 0.71

91 0.94 0.96 2.83 34.94 10.60 0.79 0.52 0.89

84 0.93 0.97 6.54 41.93 64.49 0.74 0.42 0.47

81 0.94 0.92 8.68 39.34 74.77 0.76 0.47 0.32

99 0.99 0.98 0.36 11.19 8.77 0.93 0.79 0.82

97 0.98 0.93 0.97 14.42 9.12 0.92 0.81 0.80

99 0.94 0.98 0.76 19.64 10.50 0.85 0.72 0.82

98 0.96 0.91 2.98 24.83 18.77 0.85 0.61 0.78

95 0.95 0.98 2.27 20.67 30.76 0.83 0.83 0.69

97 0.93 0.94 3.40 13.47 28.55 0.86 0.88 0.71

87 0.87 0.92 5.34 38.79 36.78 0.82 0.68 0.63

88 0.83 0.84 6.81 44.43 49.06 0.80 0.51 0.47

98 0.93 0.97 0.81 14.36 7.33 0.93 0.89 0.97

96 0.92 0.96 1.62 18.92 15.65 0.91 0.85 0.91

97 0.96 0.96 2.23 18.55 22.31 0.91 0.85 0.86

86 0.95 0.85 1.92 25.54 27.30 0.92 0.76 0.85

87 0.96 0.82 3.53 61.42 43.32 0.73 0.33 0.58

91 0.91 0.78 4.52 30.45 64.43 0.83 0.73 0.44

85 0.88 0.78 6.13 35.43 45.34 0.82 0.71 0.51

86 0.82 0.72 5.31 33.46 47.65 0.80 0.68 0.53

98 0.86 0.96 3.91 20.53 8.88 0.86 0.79 0.94

99 0.78 0.91 3.94 18.57 20.01 0.87 0.75 0.92

98 0.73 0.79 4.15 23.78 41.77 0.89 0.71 0.79

99 0.77 0.86 3.67 17.51 68.71 0.83 0.78 0.60

99 0.72 0.82 4.07 29.62 81.43 0.82 0.75 0.38

99 0.64 0.80 3.89 34.54 57.34 0.81 0.66 0.64

99 0.64 0.81 3.75 36.08 68.22 0.79 0.65 0.61

93 0.52 0.71 4.18 48.06 65.13 0.77 0.37 0.59
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obtained between the observed and the simulated values after
the iteration. The total summed RMSE of all the time lags Es is
defined as

Es ¼
XiþN

j ¼ i

ej ð8Þ
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Nday,j

XNday,j

t ¼ 1

ðQsimðj,tÞ�Qobsðj,tÞÞ
2
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ð9Þ

where Qsim(j,t) and Qobs(j,t) are the simulated and the observed runoff
at time t, respectively, ej is the RMSE value of Qsim(j) and Qobs(j) at lag
j, and Nday,j is the total number of observations at day lag j.
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t structure: ðQt ,Qtþ1 ,Qtþ2Þ ¼ f ðQt�1 ,. . .,Qt�3 ,Pt�1 ,. . .,Pt�4 ,JiÞ, where R2 is the auto
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However, another important criterion in flood simulation and
prediction is regularly adopted to evaluate the calibration perfor-
mance, which is called the Nash & Sutcliffe [33] coefficient of
efficiency (CE). The CE is widely used in runoff simulation as it is
capable of evaluating the higher discharge rate in runoff process
when a flood occurs. Considering the different time lags used, the
mean CE value of all time lags CEs can be written as the mean
value of cej on every output runoff at lag j, defined as

CEs ¼
XiþN

j ¼ i

cej=N ð10Þ

cej ¼ 1�
XNday,j

t ¼ 1

ðQobsðj,tÞ�Qsimðj,tÞÞ
2
.XNday,j

t ¼ 1

ðQobsðj,tÞ�Qsimðj,tÞÞ
2

ð11Þ

where Qm,j is the mean value of the observations at lag j. A higher
CE value represents a more accurate simulation in runoff value in
a flood process as more attention is often paid to the accuracy of
higher discharge process of a flood. A CE value of 0.9 and above
indicates the best rank in flood simulation while CE below 0.6 is
often considered to be poor.

3.5. Training settings

In order to draw ideal training results of GAWANN, the
training epoch is set to be 500 generations in the evolution
process of genetic algorithm. The population size S was set to
1000 and the size of new individual selection pool is set to 500.
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The probability of crossover pc and the mutation pm are set
to 0.5 and 0.2, respectively. After the last generation, the BP
algorithm is implemented using initial nodal weights optimized
by GA algorithm at last iteration. The number of iteration in BP
algorithm should be set large enough unless the minimum
criterion changing rate is reached. In this test, the minimum
criterion changing rate is set to 0.1% and the maximum iteration
of BP algorithm is set to 4000 avoiding over-fitting.
4. Results and discussion

4.1. Simulation results

Test cases are carried out among 32 input–output conditions.
The data from year 1994 to 1998 (5 years) are used for nodal
weight training while data from 1999 to 2007 are used in
validation. As the 6-h rainfall–runoff data were recorded during
flood period mainly from June to September, the total number of
data records engaged in the nodal weighs training counts up to
2433. Evaluation results and the performance of the GAWANN
model during the flood period is presented in Table 1. Apparently,
it infers that GAWANN model has strong ability in flood process
simulation and validation. There also exits well non-linear rela-
tionship between the summations of RMSE at different day lags
and the specified number of inputs meaning that the increasing
number of outputs results in the rising trend of RMSE while by
contrast causing decreases in the CE value. In application, it is
known that a larger number of forecasting time steps mean
stronger predictability of GAWANN. However, in general 3 fore-
casting time steps corresponding to the output Qt ,. . .,Qtþ2 (mean-
ing 18 h) are advisable in this study according to the test results
as the output series Qt ,. . .,Qtþ2 in different cases has compara-
tively lower RMSE values and higher CE values.

The number of inputs among different cases also has effects on
the simulation and prediction results of GAWANN because too
many or too few inputs cannot describe the flood process in a
right way. The purpose of the test considering different inputs is
to determine the number inputs that can represent the flood
process well. It can also be seen from Table 1 that among the
4 cases of different cases, the input structure Qt�1,. . .,Qt�3,
Pt�1,. . .,Pt�4 has better simulation results than the rest cases.
The final advisable test result of input–output structure is decided
as (Qt,Qtþ1,Qtþ2)¼ f(Qt�1,y,Qt�3,Pt�1,y,Pt�4,Ji).

The simulation and prediction results of the flood process are
shown in Fig. 5(a–r) from which Fig. 5(a–f) shows the simulated
and predicted runoff of Chaersen catchment located on the most
upstream of the areal division that have the best results
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Table 2
Calibration results of Xinanjiang model in Chaersen, Zhenxi and Taonan catchment.

Parameter Range Catchment Explanation

Chaersen Zhenxi Taonan

K [0.01, 1.0] 0.42 0.46 0.80 Ratio of the evapotranspiration to the pan evaporation

WUM (mm) [5, 100] 20.0 30.0 28 Average soil moisture storage capacity of the upper layer

WLM (mm) [50, 300] 100.0 100.0 100.0 Average soil moisture storage capacity of the lower layer

WDM (mm) [5, 100] 50.0 60.0 60.0 Average soil moisture storage capacity of the deep layer

SM (mm) [5, 100] 98.0 96.0 92.0 Areal mean free water capacity

KG [0.05, 0.7] 0.42 0.34 0.50 Free water division coefficient to groundwater

KSS [0.2.0.5] 0.12 0.50 0.48 Out flow ratio to the interflow

KKG [0.9, 0.999] 0.96 0.98 0.98 Recession coefficient of groundwater storage

KKI [0.7, 0.9] 0.86 0.86 0.79 Recession coefficient of interflow storage

KKS [0.2, 0.6] 0.35 0.35 0.32 Recession coefficient of surface channel flow

B
Usually follows:

B¼ log10ðareaÞ=10
0.33 0.35 0.35

Non-uniform spatial distribution of soil moisture

storage capacity over the catchment

C [0.01, 0.15] 0.08 0.08 0.08 Evapotranspiration coefficient of deeper layer

IMP [0.01%, 2%] 0.02 0.14 0.04 Percentage of imperious areas in the catchment

EX 1.20 1.20 1.20 1.20 Exponent of the free water capacity curve

R² = 0.89
CE=0.93
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Fig. 8. (a)–(c) Simulated hydrograph using Xinanjiang model with calibrated model parameters.
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Table 3
R2 and CE values of GAWANN and Xinanjiang model outputs considering normal flow year and extreme flow year.

Period Chaersen Zhenxi Taonan

GAWANN Xinanjiang GAWANN Xinanjiang GAWANN Xinanjiang

R2 CE R2 CE R2 CE R2 CE R2 CE R2 CE

Normal flow year (1994–1997) 0.93 0.92 0.59 0.62 0.91 0.91 0.55 0.46 0.97 0.96 0.85 0.77

Extreme flow year (1998) 0.98 0.97 0.94 0.93 0.98 0.97 0.93 0.93 0.98 0.98 0.95 0.96
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(R240.95) among the three test cases. This is mainly because that
in Chaersen catchment, there scattered 13 rainfall gages, the areal
gage containing rate of which is far more than those in Zhenxi
(Fig. 5(g–n)) and Tanoan (Fig. 5 (o–r)) catchment. Thus the areal
precipitation of Chaersen catchment is uniformly averaged among
rainfall gages while the areal rainfall information is not enough
and heterogeneous in Zhenxi and Taonan catchments. From Fig. 5,
it is also indicated that low flow discharges (base flow) are
generally slightly under-estimated while some of the peak flow
discharges are over-estimated. On the whole, the results reveal
that the admirable effectiveness of the GAWANN is beneficial to
model for flood simulation and prediction.

4.2. Parallel implement efficiency

To examine the computational efficiencies of the parallel
GAWANN algorithm in neural network nodal weight training,
8 CPUs (2.0 GHz) are used for this test case. The structure of this
parallel testing is derived as the aforementioned: (Qt,Qtþ1,Qtþ2)¼
f(Qt�1,y,Qt�3,Pt�1,y,Pt�4,Ji). Fig. 6 presents a plot of the compu-
tational time consumed to evaluate GAWANN versus the number
of slave processors. The curve represents the average value of 10
independent trials. It shows that GAWANN in parallel implement
contributes to a considerable time saving. As represented, up to
82.7% computational time can be reduced. But the test shows that
the time consumption cannot be further reduced to a large extent
when the number of processors exceed 5.

4.3. Simulation with Xinanjiang model

To demonstrate the capability of GAWANN model, the conven-
tional Xinganjiang RR model is used in flood simulation. The
structure of Xinanjiang model can be illustrated in Fig. 7. Main
components of Xinanjiang model include evapotranspiration, infil-
tration, surface flow, interflow, and ground flow routing. There exit
mainly 14 parameters in Xinanjiang model, the calibration of which
is always conducted manually. Calibrated optimum and the expla-
nation of Xinanjiang model parameters on the three catchments are
listed in Table 2, showing that there are only slight differences of
parameters among the catchments. The simulation results of the
three catchments are illustrated in Fig. 8(a–c). The CE values of
catchments Chaersen, Zhenxi, and Taonan, on the whole, are quite
acceptable, reaching 0.93, 0.89 and 0.94, respectively. Compared
with GAWANN (using output time series of Qt ,. . .,Qtþ2), results of
Chaersen, Zhenxi, and Taonan catchments show that GAWANN has
yielded even better CE values than Xinanjiang model. The compar-
ison of R2 is quite the same.

However, differences can be further distinguished by separat-
ing the whole time series into normal flood period (year 1994–
1997) and extreme flood period (year 1998). CE and R2 values of
GAWNN and Xinanjiang model are listed in Table 3. As indicated,
Xinanjiang model has not resulted in ideal CE values (CE¼0.62 in
Chaersen, CE¼0.46 in Zhenxi, and CE¼0.77 in Taonan) during
normal flow year. But with GAWANN, the capability of hygro-
graph reproduction remains strong reaching up to 0.92 in
Chaersen, 0.91 in Zhenxi, and 0.96 in Taonan. This difference
may be caused because Xinanjiang model is originally designed
suitable for simulation in humid areas. It indicates that GAWANN
is also suitable for simulation where soil moisture is low. In
extreme flood year, both GAWANN and Xinanjiang model act well
in mapping high flood flow process. The performance of mapping
hydrograph in the three catchments during extreme flood year
through GAWANN is still slightly higher than Xinanjiang model
(0.97 in Chaersen, 0.97 in Zhenxi, and 0.98 in Taonan), showing
some advantages of GAWANN in extreme flood simulation. The
familiar comparison of R2 can also be found in Table 3.
5. Summary and conclusions

In this paper, parallelized genetic algorithm integrated with
wavelet neural networks is applied to flood simulation and
prediction during flood period in arid area of China. The GA
method is integrated with BP wavelet neural algorithm to avoid
reaching local optimum; However, GA has increased the compu-
tational complexity and time consumption of the implement.
Thus, the GAWANN was enhanced to be implemented using
parallel computation (MPI). The comparison of the test cases
indicates that the simulated runoff is strongly related to the
rainfall with 4 time steps lag and observed runoff with 3 time
steps lag. Meanwhile the prediction capability up to 3 time steps
can also be concluded. Furthermore, the parallel implementation
of the best test case shows that the proposed parallel GAWANN
has good performance in increasing computational efficiency.

In conclusion, the proposed parallel GAWANN in this study
consists of the following features:
1.
 Wavelet function, which has the capability of strong non-
linear mapping, was introduced in neural networks. Therefore,
it can take the advantage of being strongly non-linear, accu-
rate, and possessing better generality.
2.
 The genetic algorithm that has the ability of reaching global
optimum has been integrated with wavelet neural networks to
avoid local optimum that often occurs when using BP algo-
rithm during the nodal weight training.
3.
 The distributed computation using MPI was further used to
strengthen the implement efficiency GAWANN during weight
training. At least 82.7% of time consumption can be reduced.
4.
 The parallelized GAWANN has successfully been applied to the
flood simulation and predication in arid area. Meanwhile
Xinanjiang model is also compared to demonstrate the cap-
ability of simulation precision. On the whole, the simulation
and predication capability and computational efficiency of
GAWANN are remarkable.
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