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a b s t r a c t

The dynamic environmental economic dispatch (DEED) model is presented in this paper, in which the
fuel cost and emission effect over a certain period of time are optimized as conflicting objectives. It is
a high dimensional, nonlinear constrained multiobjective optimization problem when generators’ valve
point effect, ramp rate limits and power load variation are considered. This paper proposes a modified
adaptive multiobjective differential evolution (MAMODE) algorithm to solve the problem. In MAMODE,
expanded double selection and adaptive random restart operators are proposed to modify the evolution-
ary processes for avoiding premature and a dynamic heuristic constraint handling (DHCH) approach is
introduced to deal with the complicated constraints. The DHCH can lessen infeasible solutions gradually.
To illustrate the effectiveness of the method, four cases based on three test power systems are studied.
The simulation result indicates that the DEED can be solved quickly. Comparison of numerical results
demonstrates the proposed method has higher performance.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Power system optimal operation needs accurate load forecasting,
suitable unit commitment and scientific power load allocation. Gen-
erally, power load allocation is operated based on the previously
determined unit commitment and predicted load curve; it is usually
classified as economic dispatch (ED) [1–5] and dynamic economic
dispatch (DED) [6–11] according to the division of schedule period.
In the past decades, environmental pollution has received more and
more attention. The Clean Air Act Amendments of 1990 [12] have
forced the electric power industry to reduce pollution emissions.
In addition to installing emission reduction equipment, emission
dispatch is an effective alternative choice. Therefore, the economic
emission dispatch (EED) model optimizing the fuel cost and emis-
sion simultaneously have been intensively studied in the past years
[13–19]. However, the EED is a static model which does not consider
the generators’ ramp rate limits and cannot ensure the global opti-
mization from the whole schedule horizon. In view of the impor-
tance of DED and EED as well as their respective shortcomings, the
coupling model called dynamic economic emission dispatch (DEED)
should be studied. However, there are little literatures for this prob-
lem. DEED serves to schedule the generators’ outputs over the whole
ll rights reserved.
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dispatch period with the consideration of multiple objectives, gen-
erators’ ramp rate limits and power load variation. So it is closer to
the practical but it is more difficult to be solved because of the
high-dimensional and multiple objectives. If considering the nonlin-
ear factors of power losses, valve point effect and prohibited operat-
ing zones further, the problem would be more complicated.

The DEED can be simplified by treating the emission as a con-
straint and minimizing the fuel cost. However, the emission con-
straint scope is unclear before. If the trade-off curve between
emission and fuel cost is convex, the solution with the minimum
fuel cost must locate at the boundary of the emission constraint
scope. In this situation, the model equals to the DED and the result
is not conducive to scientific decision making. In the recent years,
to simplify the problem, weight method [20,21], fuzzy satisfying
method [22] and price penalty factor [23] are employed respec-
tively to convert the model into a single objective optimization
problem. All of these methods have achieved good results, but only
one solution can be obtained after the program run once and the
true non-inferior solutions are hard to get. The problem can also
be simplified by converting into a series of static EED according
to the dispatch period dividing [24]. However, there are many non-
dominated solutions for each EED. How to combine these solutions
at each interval into complete solutions of the whole dispatch per-
iod is a complicated problem. Furthermore, the combined solution
may not be global optimization from the perspective of the whole
dispatch horizon. In addition to these literatures, the DEED model
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is solved as a true multiobjective problem by using NSGA-II and
good results are obtained in [25]. However, due to lack of efficient
constraint handling and global search ability, the Pareto front ob-
tained is not distributed widely enough. To date, no other methods
can solve the problem efficiently.

Differential evolution (DE) is a powerful algorithm developed
by Storn and Price [26] which could achieve good results in both
single objective optimization and multiobjective optimization
[27–33]. However, it shows premature convergence in solving
some complicated problems. In this paper, a modified adaptive
multiobjective differential evolution algorithm (MAMODE) is pro-
posed to solve the DEED problem. For avoiding the premature,
the evolutionary operators of DE are modified and expanded to
strengthen the global search ability. According to the feature of
constraints, an effective dynamic heuristic constraint handling
(DHCH) approach is presented and embedded into MAMODE to
deal with the infeasible solutions. Fast nondominated sorting and
external archive strategies are used to select and preserve elite
solutions along the evolution, respectively. To verify the effective-
ness of the proposed method in solving DEED, four simulation
examples are studied based on three power systems. The numeri-
cal result shows that the DEED can be well solved quickly.

The rest of this paper is organized as follows: Section 2 presents
the problem formulation. Related works and key points of MA-
MODE are described in Section 3. In Section 4, the proposed meth-
od using MAMODE to solve DEED is given. Four cases based on
three power systems are studied and the simulation results are dis-
cussed in Section 5. The conclusion is summarized in Section 6 fol-
lowed by an acknowledgement.
2. Problem formulation

2.1. Objectives

2.1.1. Minimization of fuel cost
For each generating unit, the fuel cost of a generating unit con-

sidering valve-point effect can be modeled as the sum of a qua-
dratic and a sinusoidal function. The total fuel cost (FC) over the
whole dispatch period is expressed as

min FC ¼
XT

t¼1

XN

i¼1

½ai þ biPi;t þ ciðPi;tÞ2 þ jdi sinðeiðPi;min � Pi;tÞÞj�

ð1Þ

where T is the number of intervals in the dispatch period; N is the
number of generating units; Pi,t is the power output of ith generat-
ing unit at interval t; Pi,min is the lower output limit for ith generat-
ing unit; ai, bi, ci, di, and ei are the coefficients of fuel cost function
for the ith generating unit.
2.1.2. Minimization of emission
The main atmospheric pollutants of power system caused by

fossil-fueled generators are SOx, NOx and CO2. The emission of each
pollutant can be modeled separately. In this paper, the emission of
a generating unit is modeled as the sum of a quadratic and an
exponential function. The total emission (EM) over the whole dis-
patch period is expressed as

min EM ¼
XT

t¼1

XN

i¼1

½10�2ðai þ biPi;t þ ciðPi;tÞ2Þ þ gi expðdiPi;tÞ� ð2Þ

where ai, bi, ci, gi, and di are the coefficients of emission function of
the ith generating unit.
2.2. Constraints

(1) Generator capacity constraints
Pi;min 6 Pi;t 6 Pi;max; ði ¼ 1;2; . . . ;N; t ¼ 1;2; . . . ; TÞ ð3Þ
where Pi,min, Pi,max are the lower and up generation output limit of
the ith generating unit.

(2) Real power balance constraints
XN

i¼1

Pi;t � PL;t � PD;t ¼ 0; ðt ¼ 1; . . . ; TÞ ð4Þ
where PD,t and PL,t are the load demand and power loss at interval t,
respectively. The exact value of PL,t can be determined by a power
flow solution, but the most popular approach for finding an approx-
imate value is by the way of Kron’s loss formula:
PL;t ¼
XN

i¼1

XN

j¼1

Pi;tBijPj;t þ
XN

i¼1

Pi;tBi0 þ B00; ðt ¼ 1; . . . ; TÞ ð5Þ
where Bij is the ijth element of the loss coefficient square matrix, Bi0

and B00 are ith element of the loss coefficient vector and the loss
coefficient constant, respectively.

(3) Generators’ ramp rate limits
Pi;t � Pi;t�1 6 URi � Dt

Pi;t�1 � Pi;t P DRi � Dt

�
; ði ¼ 1;2; . . . ;N; t ¼ 1;2; . . . ; TÞ

ð6Þ
where URi and DRi are the ramp up and down rate limits of ith gen-
erating unit, respectively, Dt is the length of each time interval.

2.3. Mathematical model

Aggregating the objectives and constraints listed above, the
DEED problem can be formulated as a nonlinear constrained mul-
tiobjective optimization problem (MOP). Without loss of general-
ity, the MOP can be described mathematically as follows [34]:

min y ¼ ðf1ðxÞ; f2ðxÞ; . . . ; fkðxÞÞ
s:t: giðxÞ ¼ 0; i ¼ 1;2; . . . ; p

hjðxÞ 6 0; j ¼ 1;2; . . . ; q

ð7Þ

where x is a decision vector which represents a solution of the prob-
lem; y is the objective function vector with k objectives; fi(x) is the
ith objective function; p and q are the numbers of equality and
inequality constraints, respectively.

The purpose of MOP is exploring the relationship among the in-
volved conflicting objectives and providing decision support. A
MOP gives rise to a set of Pareto optimal solutions instead of one
optimal solution. The concept of Pareto optimal is based on the
definition of ‘‘dominate’’. For a minimization MOP, a solution x1

dominates x2 (written as x1 � x2) if and only if the following two
conditions satisfied: (1) "i 2 {1, 2, . . . , k}: fi(x1) 6 fi(x2) and (2)
$j 2 {1, 2, . . . , k}: fi(x1) < fi(x2). In general, the solution which is
not dominated by any other solution is called nondominated or
Pareto optimal solution. The set of all nondominated solutions is
called Pareto optimal set, the corresponding set in objective space
is called Pareto optimal front (POF).

3. Related works and key points of MAMODE

3.1. Classic differential evolution

DE starts from a random initialized population P which com-
prises of Np floating-point encoded individuals. Each individual
xi = (xi1, xi2, . . . , xin) is a vector containing t decision variables. DE
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gets an optimal solution by repeating Mutation–Crossover–Selec-
tion operators over Gmax generations.

3.1.1. Mutation
The Mutation operator creates mutant vector vi = (vi1, vi2, . . . ,

vin) by disturbing a randomly selected vector xa with the difference
of two other randomly selected vectors xb and xc.

v i ¼ xa þ Fðxb � xcÞ ð8Þ

where xa, xb and xc (a – b – c – i) are randomly chosen vectors from
the population P and selected anew for each parent vector. The scal-
ing constant F is an algorithm control parameter used to control the
perturbation size of the mutation.

3.1.2. Crossover
The Crossover operator generates trial vector ui = (ui1, ui2, . . . ,

uin) by selecting the corresponding components between vi and
the target vector xi according to a selected probability CR.

uij ¼
v ij; if rj 6 CR or j ¼ q

xij; otherwise

�
ð9Þ

where rj is a uniformly distributed random number within [0,1] and
renewed for each j. The parameter CR controls the diversity of the
population and aids the algorithm to escape from local optima. q
is a randomly chosen index from {1, 2, . . . , Np}. The Crossover oper-
ator guarantees that the trial vector ui gets at least one parameter
from the mutant vector vi.

3.1.3. Selection
The Selection operator determines the population between the

trial vector ui and target vector xi, the individuals with a better fit-
ness is selected.

xi ¼
ui; if f ðuiÞ < f ðxiÞ
xi; otherwise

�
ð10Þ
3.2. Expanded double selection

For avoiding the premature of DE in solving high-dimensional
and multiobjective problems, the evolutionary operators should
be modified to improve the global search ability. In the original
DE, the search process passes by Mutation, Crossover and Selection
operators. After analysis carefully, it is easy to find the Mutation
operator plays the global search role by disturbing a solution with
the difference of two others; on the contrary, the Crossover opera-
tor plays more of a local search role because of it cuts down the
variety of Mutation operator. On the other hand, the mutant vector
vi is thrown away after Crossover and its information is not used
enough in class DE.

In this paper, the Expanded Double Selection (EDS) is proposed
to strengthen the global search ability by expanding the evolution-
ary operators of DE and make full use of the information of the
mutant vector vi and the trial vector ui. EDS expands the
Mutation–Crossover–Selection of DE to Mutation–Selection (I)–
Crossover–Selection (II). The Selection (I) takes place between xi

and vi after Mutation, the Selection (II) takes place between xi

and ui after Crossover. In addition, the solutions are replaced only
when the new one having better fitness for single objective optimi-
zation in classic DE. But in multiobjective problem, for improving
the global search ability further, the solutions will be replaced as
long as the new one is not dominated by it. The EDS can be defined
as follows. The first Selection (I) is

xi ¼
xi; if xi � v i

v i; otherwise

�
ð11Þ
The second Selection (II) is

xi ¼
xi; if xi � ui

ui; otherwise

�
ð12Þ

That is to say, not only after Crossover operator but also follow-
ing Mutation operator is the evolving individual xi replaced by the
new generated solution if it does not dominate the new one.

3.3. Dynamic heuristic constraint handling

As well as high-dimensional and multiple objectives, strong
constraint is another important factor making the DEED problem
hard to be solved. The strong constraint makes the feasible region
of the problem to be very narrow. If searching randomly in the
whole space, the algorithm would be very inefficient. The key to
solving the DEED problem is how to handle the strong constraints
efficiently. For equality constraints, it can be handled easily by set-
ting the over-limited values to the corresponding boundary. But for
the equality constraints, it is more difficult to deal with because of
the strong coupling among decision variables. In this paper, the
DHCH method is employed to handle the equality constraints.
For each infeasible solution x, the DHCH is done interval by
interval.

The DHCH is an iterative correction process. For avoiding spend-
ing too much time on the DHCH, a maximum iteration number L
and a constraint violation threshold e are set in advance to control
the DHCH. In this paper, we set L = 10, e = 10�6. The processes of
DHCH are listed as follows.

Step 1: Set the iteration number of adjusting operation l = 0.
Step 2: Calculate the violation V(x, t) of the real power balance
constraint at interval t:
Vðx; tÞ ¼ PD;t þ PL;t �
XN

i¼1

Pi;t ð13Þ
If V(x, t) > e and l < L, then go to Step 3; otherwise go to Step 4.
Step 3: Modify the real power output of all generating units at
interval t:
Pi;t ¼ Pi;t þ Vðx; tÞ=N; ði ¼ 1;2; . . . ;NÞ ð14Þ
If the new Pi,t violates the inequality constraints, it is handled
according inequality constraints handling method. Let l = l + 1, and
go to Step 2.

Step 4: The termination of the constraint handling procedure at
the interval t is done.

3.4. Constraint Pareto dominance

Although the DHCH can eliminate the number or the violation
degree of infeasible solutions, there are still some solutions violat-
ing the constraints in the early periods because of the limit of max-
imum iteration and violation threshold. The total violation V(x) of
the solution x is calculated as:

VðxÞ ¼
XT

t¼1

jVðx; tÞj ð15Þ

In MAMODE, the selection strategy considering the constraint
violation is employed to choose the better solutions, it can be de-
scribed as follows. Solution x1, Constraint Pareto Dominate x2 (de-
noted as x1 ^ x2) as long as one of the following conditions
satisfied: (a) V(x1) 6 VTH and V(x2) > VTH; (b) V(x1) 6 VTH, V(x2) 6 VTH

and x1 � x2; and (c) V(x1) > VTH, V(x1) > VTH and V(x1) < V(x2). Here
VTH is the total violation threshold of a solution which decides
whether an infeasible solution can be selected. Setting the threshold
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VTH can ensure the population containing some infeasible solutions,
to some extent that can enhance the local search ability of the algo-
rithm. In this paper, the violation threshold VTH = 0.1 for all the
cases.

3.5. External archive updating

Elitist strategy which was first introduced by Zitzler [35] is a
mechanism to preserve the best solutions of the current generation
using an external archive set (denoted as Q) along the search pro-
cess. Elitist strategy can be realized either by placing one or more
of the nondominated solutions directly into the archive set or by
replacing only those solutions that are dominated by the nondom-
inated solutions. In this paper, the method we used to update the
external archive Q can be described as follows. (1) Mix the popula-
tion P and Q to a population R = P [ Q. (2) Clear the archive Q and
classify the population R using the fast nondominated sorting [36].
(3) Place the best nondominated set F1 of the mixed population R
to the external archive set Q directly. But to limit computation
source, the size of Q is usually a constant (Nq). If the size of F1 is less
than Nq, the second-best nondominated set F2 will be placed in Q
also until the archive set Q is filled. On the other hand, if the size
of Q after updating is more than Nq, a truncation operator is needed
to maintain the size of Q by eliminating the redundant individuals.
In this paper, the crowding distance based on the normalized
objective value [37] is used to pick out individuals.

The pseudo-codes of this operation are as follows
1.
 classify the population R

2.
 for i = 1 to the maximum rank of R

3.
 place the set Fi to Q directly

4.
 if |Q| < Nq
5.
 i = i + 1;

6.
 else if |Q| > Nq
7.
 run truncation for Q;

8.
 break;

9.
 end if

10.
 end for
3.6. Adaptive random restart

Due to employing the external archive, the nondominated solu-
tions are preserved to keep the elitist information of the evolution-
ary population. In MAMODE, an adaptive random restart (ARR)
operator is proposed to use the elitist information for enhancing
the algorithm. In ARR, the half worse solutions of the population
P with higher rank or smaller crowding distance is replaced by
new random generated solutions as:

xij ¼
lj þ fij � ðuj � ljÞ if nNDS P Nq=2
xi;min þ fij � ðxi;max � xi;minÞ otherwise

(
ð16Þ

where fij is an uniformly distributed random number generated in
[0,1] and is renewed for each solution xi. nNDS is the number of non-
dominated solutions of the current generation. lj and uj are the low-
er and upper value of the jth dimension of all nondominated
solutions and can be expressed as

lj ¼minfxijji ¼ 1;2; . . . ;Nq; xi 2 Qg
uj ¼maxfxijji ¼ 1;2; . . . ;Nq; xi 2 Qg

�
ð17Þ

As the search progresses, the distance between lj and uj will be
narrower and narrower, so the ARR operator is adjusted adaptively
from global search to local improvement.
4. Proposed method using MAMODE to solve DEED

4.1. Solution coding and initialization

In MAMODE, the population P consists of Np individuals. Each
individual is composed of NT decision variables of real power out-
put at each interval, the population P and individual Xi can be rep-
resented as (18) and (19).

P ¼ fX1;X2; . . . ;XNpg ð18Þ

Xi ¼

P11 P12 � � � P1T

P21 P21 � � � P2T

..

. ..
. ..

. ..
.

PN1 PN2 � � � PNT

2
66664

3
77775 ð19Þ

In initialization process, each individual Xi 2 P0 is randomly
generated within the power output limits:

Pi;t ¼ Pi;min þ ni;t � ðPi;max � Pi;minÞ ð20Þ

where ni,t is a uniformly distributed random number generated in
[0,1] and renewed for each i at each time interval t.

4.2. Fuzzy-based decision making

Generally, there are more than one Pareto solutions obtained in
the final generation. However, only one solution is needed for prac-
tical applications. Such a solution which is commonly called the
best compromise solution must satisfy all the different objectives
to some extent. According to the imprecise nature of the judg-
ments of decision makers, fuzzy set theory has been implemented
to derive a candidate Pareto solution [38,39]. The proposed method
used the fuzzy-based mechanism to extract the best compromise
solution based on the final external archive. The processes of fuz-
zy-based decision making are as follows.

(a) Find the minimum and maximum values (denoted as fk,min

and fk,max respectively) of the kth objective function among
the solutions of the external archive.

(b) Calculate the membership function lik of the kth objective of
ith solution.
lik ¼
1 fi;k 6 fk;min

fk;max�fi;k
fk;max�fi;min

; fk;min < fi;k < fk;max

0 fi;k P fk;max

8>><
>>: ð21Þ
(c) Calculate the normalized membership function li for each
solution of the external archive:
li ¼
PK

k¼1li;kPI
i¼1

PK
k¼1li;k

ð22Þ
where K is the number of objective functions, I is the number of
solutions in external archive.

(d) Select the solution with the maximum value of li as the best
compromise solution.

4.3. Procedures for solving DEED

Step 1: g = 0, initialize the population P0 and set the external
archive Q0 = U.
Step 2: for each individual xi e Pg, run DHCH for xi and then
evaluate it.
Step 3: run expanded evolution operators for each solution
xi e Pg.
3.1: run Mutation operator to generate a mutation solution vi.
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3.2: run DHCH for vi and evaluate it.
3.3: run Selection (I) operator to update xi.
3.4: run Crossover operator to generate a trial solution ui.
3.5: run DHCH for ui and evaluate it.
3.6: run Selection (II) operator to update xi.
Step 4: mix Pg and Qg to a temp population Rg and clear Qg.
Step 5: classify Rg using fast nondominated sorting mechanism
and then update Qg.
Step 6: increase the generation by g = g + 1, if g < Gmax, run ARR
opera go back to Step 2, otherwise go to Step 7.
Step 7: stop the procedures and output archive Q or the best
compromise solution selected by the fuzzy-based mechanism
as the final result.

5. Simulation examples

To verify the feasibility and effectiveness of the proposed algo-
rithm, four cases with three test systems are studied in this section.
The testing systems are described in Section 5.1 and the simulation
results are expressed and analyzed in Section 5.2. In this paper, all
the programs have been implemented in Java (SE1.7) on a PC (In-
tel(R) Core(TM) 2 Duo CPU, T6670, 2.20 GHZ, Win 7 (32bit) opera-
tion system).
5.1. Description of the test systems

(1) The System 1 is the IEEE 30-bus power system with six gen-
erating units [24]. Both the non-smooth fuel cost and emis-
sion level functions of generating units and the nonlinear
power loss of the network are considered. The unit data of
the system and power loss formula coefficients can be found
in [40], the power load demand can be found in [24].

(2) The System 2 is a 10 generating unit power system [23,25].
Both non-smooth fuel cost and emission level functions of
generating units and power loss of network are considered.
The unit data of the system which was modified from [41]
and transmission loss formula coefficients can be found in
[25].

(3) The System 3 is the IEEE 118-bus power system with 14
generating units [24]. For comparison, two scenarios are
considered based on this system. In two scenarios, both
non-smooth fuel cost and emission level functions of gener-
ating units are considered. But in one scenario, the power
loss is not considered as done in [24]. In another scenario,
the power loss is taken into account for further demonstrat-
ing the global search ability of the proposed method in solv-
ing DEED with highly nonlinear equality constraints. The
unit data of this system can be found in [40]. The transmis-
sion loss formula coefficients can be found in [42].

Based on the above three test systems, four cases studied are
listed in Table 1. In all cases, the dispatch period is 24 h with 1 h
Table 1
List of four studied cases.

Case
no.

System
no.

Considering
power loss

Number of
decision variables

Number of equality
constraints

Case
1

System
1

Yes 6 � 24 = 144 24

Case
2

System
2

Yes 10 � 24 = 240 24

Case
3

System
3

No 14 � 24 = 336 24

Case
4

System
3

Yes 14 � 24 = 336 24
intervals; the demand load curve over the dispatch period has been
divided into 24 intervals.
5.2. Simulation results and analysis

5.2.1. Case 1
In this case, the IEEE 30-bus system [24] is solved by the pro-

posed method. The non-smooth fuel cost function and power loss
are considered in DEED model. The parameters of the presented
method used in this case are listed as follows: Np = 300, Nq = 70,
Gmax = 2000; F = 0.8, and Pc = 0.3, respectively. Based on the above
parameter setting, the system is tested and the Pareto front ob-
tained by the MAMODE is shown in Fig. 1. The minimum values ob-
tained of each objective and the time consumed by MAMODE and
other three methods [24] are listed as Table 2. For comparison, the
results of the best compromise solution obtained by MAMODE and
GSOMP [24] are listed in Table 3, where the objective values ob-
tained by GSOMP are calculated from the details of the final solu-
tion [24]. The detail information about the best compromise
solution obtained by the MAMODE is given in Table 4.

From Fig. 1 we can see directly that the Pareto optimal solutions
are widely and uniformly distributed in the objective space. Fur-
thermore, it is clear to see that the best compromise solution ob-
tained by MAMODE has better results than that obtained by
GSOMP [24]. In Table 2, the minimum objective values obtained
by MAMODE are not good enough as that obtained by the other
three methods, but all of them are close to each other, the differ-
ence is very small. But it should be noted that the numerical results
in [24] are ‘‘the sum of their minimal values obtained at each hour,
over the 24 h’’. Whether the solution having the extremely objec-
tive values while satisfying all the constraints exist or not cannot
be confirmed in [24]. In Table 3, the best compromise solution ob-
tained by MAMODE is compared with the final solution in [24]. It is
clear to find that the best compromise solution obtained by the
proposed method is better than the final solution in [24] in terms
of objective values and the time consumed. It should be mentioned
that the computing time makes the proposed approach to be prom-
ising for solving the DEED in practice. From the results listed in Ta-
ble 4, the power balance constraints can be checked based on the
detailed information of the compromise solution. We can see that
the sum of the output of generating units equals to the power load
plus power loss at each interval.
Fig. 1. POF of case 1 obtained by MAMODE.



Table 2
Comparison of the minimum objective value of case 1.

MAMODE GSOMP [24] MOPSO [24] NSGA-II [24]

FCmin ($) 25732.0 25493.0 25633.2 25507.4
EMmin (lb) 5.7283 5.6847 5.6863 5.6881
Time (s) 428 1262.0 1095.8 4341.3

Table 3
Comparison of the final (compromise) solution of the case 1.

MAMODE GSOMP [24]

FC ($) 25912.89419 25924.45557
EM (lb) 5.979548 6.004152
Time (s) 428 1262.9

Fig. 2. POF of case 2 obtained by MAMODE.
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5.2.2. Case 2
In this case, the 10 generating unit test system with the consid-

eration of power loss is tested. The problem has 24 nonlinear
equality constraints. The parameters of the presented method used
in this case are set as follows: Np = 200, Nq = 60, Gmax = 1000,
F = 0.7, and Pc = 0.2. Based on the above parameter setting, the
POF obtained by MAMODE and related results from [25] are shown
in Fig. 2. The POF obtained by NSGA-II [25] is given in Fig. 3. For the
convenience of comparison, the results obtained by MAMODE, IBFA
[23], NSGA-II [25], linear combined (w = 0.5) optimization by RCGA
[25], dynamic economic dispatch by RCGA [25], and dynamic emis-
sion dispatch by RCGA [25] are summarized in Table 5.

From Fig. 2, it is clear to see that the Pareto solutions obtained
by the proposed method are well distributed in the objective space.
By comparing Fig. 2 with Fig. 3, it is easy to find that the Pareto
solutions obtained by MAMODE distribute more widely than that
obtained in [25]. In addition, we can see from Fig. 2 that the best
compromise solution obtained by MAMODE is better than the best
compromise solution obtained by NSGA-II [25], the best fuel cost
solution, the best emission solution and the best solution of linear
combined optimization (w = 0.5) obtained by RCGA [25].

From Table 5, we compare the minimum fuel cost firstly ob-
tained by different methods. The minimum fuel cost obtained by
Table 4
The best compromise solution of case 1 obtained by MAMODE (/MW).

t P1 P2 P3 P4

1 0.50360 0.50000 0.53564 0.71952
2 0.51078 0.51645 0.83277 0.91291
3 0.50157 0.50184 0.58741 0.79953
4 0.50000 0.50060 0.50627 0.53431
5 0.50246 0.50530 0.56232 0.79353
6 0.50971 0.50278 0.73482 0.98747
7 0.52234 0.61407 0.95315 1.12284
8 0.56194 0.63102 1.02812 1.24146
9 0.53034 0.67932 1.13455 1.26576
10 0.55067 0.65774 1.04143 1.19163
11 0.54533 0.64585 1.20538 1.24681
12 0.59317 0.71320 1.14356 1.42606
13 0.52469 0.65465 1.09103 1.22374
14 0.50560 0.60084 1.03323 1.22734
15 0.51007 0.67906 0.95899 1.13631
16 0.53469 0.68599 1.12259 1.23908
17 0.52331 0.64701 1.05372 1.25145
18 0.59079 0.78520 1.12479 1.31603
19 0.53307 0.74636 1.09486 1.23886
20 0.52511 0.62362 1.11703 1.23514
21 0.51071 0.56845 0.96567 1.07560
22 0.50792 0.52514 0.91424 1.07138
23 0.50682 0.55119 0.85538 1.01619
24 0.50082 0.52474 0.79579 0.88548
MAMODE (2.492451 � 106 $) is more than the value obtained by
IBFA [23] (2.481773 � 106 $), but less than the value obtained by
RCGA (2.5168 � 106 $). Secondly, we compare the minimum emis-
sion obtained by different methods. The minimum emission
obtained by MAMODE (2.95244 � 105 lb) is much less than the va-
lue obtained by IBFA (2.95883 � 105 lb) and RCGA (3.0412 �
105 lb). Thirdly, we compare the compromise solution obtained
by different methods. From the perspective of fuel cost, the result
obtained by MAMODE (2.514113 � 106 $) is less than that of IBFA
(2.517116 � 106 $), NSGA-II (2.5226 � 106 $), and that of linear
combination objective by RCGA (2.5251 � 106 $). On the other
hand, from the perspective of emission effect, the result obtained
by the MAMODE (3.02742 � 105 lb) is more than that of IBFA
(2.99036 � 105 lb), but less than that of NSGA-II (3.0994 � 105 lb)
and that of linear combination optimization by RCGA
(3.1246 � 105 lb). In summary, from the perspective of both ef-
fects, the compromise solution obtained by MAMODE is better
than that of NSGA-II and that of linear combination optimization
P5 P6 Total PL PD

0.53125 0.50936 3.29937 0.04937 3.25
0.66584 0.51794 3.95668 0.05668 3.90
0.65325 0.50880 3.55240 0.05240 3.50
0.50423 0.50000 3.04540 0.04540 3.00
0.52825 0.50887 3.40072 0.05072 3.35
0.82037 0.50507 4.06022 0.06021 4.00
0.91105 0.70233 4.82579 0.07579 4.75
0.91239 0.76163 5.13655 0.08655 5.05
1.12759 0.80435 5.54191 0.09191 5.45
1.08015 0.76684 5.28845 0.08845 5.20
1.11388 0.83536 5.59261 0.09261 5.50
1.13137 0.85077 5.85812 0.10812 5.75
1.07445 0.76781 5.33636 0.08636 5.25
1.04617 0.82081 5.23400 0.08400 5.15
0.85954 0.68159 4.82556 0.07556 4.75
1.05799 0.74771 5.38804 0.08804 5.30
0.99131 0.76821 5.23500 0.08500 5.15
1.13454 0.90822 5.85957 0.10957 5.75
1.01038 0.71467 5.33819 0.08819 5.25
1.12796 0.70590 5.33475 0.08475 5.25
0.94015 0.55740 4.61798 0.06798 4.55
0.75179 0.54202 4.31250 0.06250 4.25
0.71330 0.67182 4.31470 0.06470 4.25
0.81260 0.53846 4.05790 0.05790 4.00



Fig. 3. POF of case 2 obtained by the method in [25].

Table 5
Comparison of the simulation results of case 2.

Method Time
consumed

Objective option FC/106 ($) EM/105

(lb)

MAMODE 8 min 25 s Best FC 2.492451 3.15119
Best EM 2.581621 2.95244
Best
compromise

2.514113 3.02742

IBFA[23] 5.2017 s Best FC 2.481773 3.27501
Best EM 2.614341 2.95883
Best
compromise

2.517116 2.99036

NSGA-II
[25]

20 min
11.475 s

Best
compromise

2.5226 3.0994

RCGA [25] About 18 min Min FC 2.5168 3.1740
About 18 min Min EM 2.6563 3.0412
18 min
25.363 s

Min
combination

2.5251 3.1246

Table 6
The best compromise solution of case 2 obtained by MAMODE (/MW).

t P1 P2 P3 P4 P5

1 152.98 135.35 142.72 115.51 83.13
2 150.72 138.38 89.21 123.90 130.74
3 150.00 136.16 149.27 150.62 172.88
4 153.93 194.58 210.09 130.34 221.42
5 156.18 216.46 195.22 178.24 229.00
6 205.81 246.16 214.04 223.27 243.00
7 198.04 202.03 294.04 273.27 243.00
8 221.73 271.38 258.38 296.00 242.94
9 294.78 296.29 317.57 298.40 242.97

10 330.15 343.55 339.95 299.93 242.99
11 381.40 388.24 340.00 296.33 243.00
12 403.94 411.43 339.98 299.99 242.99
13 368.06 360.54 339.99 300.00 242.98
14 288.37 324.95 297.64 299.06 242.74
15 211.62 265.16 274.72 295.70 242.96
16 151.18 219.44 195.23 246.48 242.64
17 170.60 144.04 184.03 237.41 242.90
18 228.51 219.13 204.59 237.05 243.00
19 225.22 254.01 281.03 286.73 243.00
20 296.46 325.35 337.08 300.00 243.00
21 291.94 288.71 329.06 299.52 243.00
22 213.68 209.86 249.31 252.32 212.57
23 150.52 137.44 172.95 203.68 167.86
24 150.12 135.72 117.94 154.05 205.08

Fig. 4. POF of case 3 obtained by MAMODE.
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by RCGA, it is nondominated by that of IBFA each other. However,
it is noted that both IBFA and RCGA are single-objective optimiza-
tion which can get only one best solution after the program run
once.

The details of the compromise solution obtained by MAMODE
are listed in Table 6 from which the power balance constraints
can be validated. At each time interval, the sum of the output of
generating units matches the power load plus the power loss
mutually, the solution does not violate the equality constraints at
each interval. The time consumed of the proposed method is
8 min and 25 s which demonstrates that the proposed algorithm
the stronger search ability and is very promising in practice. From
the above result comparisons we can conclude that, compared
with other comparative methods, the proposed method can pro-
vide better results, the effectiveness of the proposed for solving
DEED problem is verified again.
P6 P7 P8 P9 P10 PL

145.64 128.27 116.54 24.10 11.28 19.52
160.00 130.00 119.97 49.38 40.04 22.34
155.39 125.63 119.98 71.55 54.98 28.46
151.47 129.85 119.81 79.68 51.01 36.17
160.00 130.00 120.00 80.00 55.00 40.09
160.00 130.00 120.00 80.00 55.00 49.29
160.00 130.00 120.00 80.00 55.00 53.38
159.94 129.94 119.95 79.94 54.95 59.15
159.97 129.97 119.97 79.97 54.97 70.86
160.00 130.00 120.00 80.00 55.00 79.56
160.00 129.99 120.00 80.00 55.00 87.96
159.77 129.99 119.41 80.00 54.99 92.50
159.99 129.98 119.98 79.98 54.99 84.47
159.98 129.74 119.44 78.26 54.95 71.13
159.96 129.99 119.95 79.96 54.95 58.97
159.64 129.64 119.64 79.64 54.64 44.16
157.63 129.48 118.98 79.57 55.00 39.64
160.00 130.00 120.00 80.00 55.00 49.27
160.00 130.00 120.00 80.00 55.00 58.99
160.00 130.00 120.00 80.00 55.00 74.89
159.29 129.69 119.54 79.50 54.50 70.75
160.00 130.00 119.62 80.00 49.64 48.99
160.00 126.24 111.63 79.98 53.55 31.85
148.92 124.05 96.92 51.71 24.73 25.23



Fig. 5. Constraints checking of the best compromise solution.

Table 7
Comparison of the final results of case 3.

MAMODE GSOMP [24] MOPSO [24] NSGA-II [24]

FC ($) 114709.2 142547.2 143218.3 145790.5
EM (lb) 70.21 331.23 359.07 348.58
Time (s) 235 5321.0 4733.0 14123.2

Fig. 6. POF of case 4 obtained by MAMODE.

Table 8
The results of case 4 obtained by the MAMODE.

Minimum Maximum Best compromise

FC ($) 118094.70 134258.849082 125648.735817
EM (lb) 93.597782 156.481978 107.850296
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5.2.3. Case 3
In this case, the IEEE 118-bus system with 14 generating

units [40] without considering the power loss is studied to verify
the effectiveness of the proposed algorithm in solving high
dimensional DEED problem. The parameters of MAMODE used
in this case are set as: Np = 100, Nq = 50, Gmax = 1000, F = 0.5,
and Pc = 0.2.
Based on the above parameter setting, The Pareto front of this
case obtained by the proposed method is shown in Fig. 4. The
power balance constraints checking for the best compromise solu-
tion is displayed in Fig. 5. The detailed results of the best compro-
mise solution are given in Table 7. For the convenience of
comparison, the final results of the same problem reported in
[24] are summarized in Table 7 too. It is clear to see that the Pareto
solutions are distributed uniformly in the objective space from
Fig. 4. Fig. 5 shows that the power balance constraints at each
interval are satisfied. From Table 7, it is easy to find that the result
of the proposed method is better than that of the other three meth-
ods. Due to the limited size, the details of the best compromise
solution are not listed here.
5.2.4. Case 4
In this case, the IEEE 118-bus system with 14 generating units

considering the power loss of the network is studied to verify the
effectiveness in solving high dimensional DEED problem with non-
linear objectives and constraints. The parameters used in this case
are set as Np = 100, Nq = 50, Gmax = 1000, F = 0.55, and Pc = 0.2.

Based on the above parameter setting, The Pareto front obtained
by the proposed method is shown in Fig. 6. From this figure, we can
see directly that the Pareto solutions are widely and well distrib-
uted. Due to the limited size of the paper, the details of the com-
promise solution are not given here, too. The minimum,
maximum of each objective value and the best compromise solu-
tion obtained by the proposed MAMODE method are listed in
Table 8.
6. Conclusion

The DEED model is presented in this paper. In this model, the
total fuel cost and emission are optimized as conflicting objectives
over a certain dispatch period. The nonlinear factors of the gener-
ators’ ramp rate limits, valve point effect, power load variation and
power losses are taken into consideration. A modified adaptive
multiobjective differential evolutionary algorithm is proposed to
solve the problem. In the proposed method, the evolutionary oper-
ators are modified and expanded to strengthen the global search
ability for avoiding premature convergence. Fast nondominated
sorting and elite strategy are employed to select and preserve bet-
ter solutions. An effective dynamic heuristic constraint handling
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approach is used to deal with the complicated constraints. By test-
ing on four cases of three power systems, the simulation results
show that DEED is well solved by the proposed method and a set
of well and widely distributed Pareto optimal solutions can be ob-
tained quickly. Comparison of results with these methods pro-
posed in related literature indicates that the proposed approach
has higher performances and better potential applications.
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