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Streamflow forecasts are dynamically updated in real-time, thus facilitating a process of forecast uncer-
tainty evolution. Forecast uncertainty generally decreases over time and as more hydrologic information
becomes available. The process of forecasting and uncertainty updating can be described by the martin-
gale model of forecast evolution (MMFE), which formulates the total forecast uncertainty of a streamflow
in one future period as the sum of forecast improvements in the intermediate periods. This study tests the
assumptions, i.e., unbiasedness, Gaussianity, temporal independence, and stationarity, of MMFE using
real-world streamflow forecast data. The results show that (1) real-world forecasts can be biased and
tend to underestimate the actual streamflow, and (2) real-world forecast uncertainty is non-Gaussian
and heavy-tailed. Based on these statistical tests, this study proposes a generalized martingale model
GMMFE for the simulation of biased and non-Gaussian forecast uncertainties. The new model combines
the normal quantile transform (NQT) with MMFE to formulate the uncertainty evolution of real-world
streamflow forecasts. Reservoir operations based on a synthetic forecast by GMMFE illustrates that
applications of streamflow forecasting facilitate utility improvements and that special attention should
be focused on the statistical distribution of forecast uncertainty.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Streamflow forecasts provide useful information about the fu-
ture. Forecasts are especially important for predicting extreme
hydrologic events and are used to guide management decisions
on water resource systems [3,4,14]. Advances in weather forecast-
ing, hydrologic modeling, and hydro-climatic teleconnections have
improved the ability to forecast streamflows [6,23,25]. As a result,
streamflow forecasts have been extensively applied in water
resource management. The applications usually take a two-
component approach. One paper develops innovative models for
streamflow forecasting, whereas the other proposes novel optimi-
zation models to incorporate the forecast into decision making. For
example, Carpenter and Georgakakos [6] generated an ensemble
streamflow forecast that considered both atmospheric forcing
and hydrologic model uncertainty. Yao and Georgakakos [26] then
developed forecast-management schemes with operation rules
and optimization models. Maurer and Lettenmaier [13] assessed
the seasonal streamflow predictability of the Mississippi River ba-
sin. Based on these data, [14] evaluated the value of seasonal
streamflow forecast to guide the Missouri River main-stem
reservoir operation. Ajami et al. [1] proposed an integrated
Bayesian uncertainty estimator to account for input, parameter,
and model structural uncertainty in hydrologic prediction, after
which they demonstrated the importance of considering hydrolog-
ical uncertainty in sustainable water resource management [2].

Uncertainty is an inherent and important characteristic of
streamflow forecasting. In both real-world and hypothetical stud-
ies focusing on the applications of streamflow forecasting, uncer-
tainty has been identified as the major influencing factor of the
value of the forecast [2,16,27]. Real-world studies that aim to de-
velop decision support systems for a targeted river basin generally
address forecast uncertainty using advanced forecast techniques
(e.g., ensemble forecasts) and optimization (or simulation) models
[3,20,26]. Hypothetical studies typically use synthesized forecast
uncertainty based on certain assumptions, e.g., unbiasedness, and
Gaussian distributions [12,24,27]. Testing the validity of these
assumptions is an important issue for this type of hypothetical
study. In this investigation, we use real-world forecast data and
perform statistical tests on assumptions of forecast uncertainty.

Forecast uncertainty evolves in real-time because streamflow
forecasts are dynamically updated. On one hand, the uncertainties
of forecasts for future periods become larger as forecast lead-time
increases. On the other hand, the uncertainties of forecasts for a
certain time period decrease over time as more hydrologic
information becomes available. Heath and Jackson [8] proposed a
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martingale model of forecast evolution (MMFE) to formulate the
uncertainty evolution of demand forecasts in supply chain man-
agement. Zhao et al. [27] applied MMFE to model deterministic,
ensemble, and probabilistic streamflow forecasts and illustrated
that ensemble and probabilistic forecasts are more effective than
a deterministic forecast. MMFE formulates the total forecast uncer-
tainty of a streamflow in one future period as the sum of forecast
improvements in the intermediate periods. This study tests the
assumptions of MMFE, i.e., single-period forecast improvements
are unbiased, Gaussian distributed, temporally independent, and
stationary. Furthermore, this study proposes a generalized martin-
gale model GMMFE to address cases wherein the assumptions are
violated.

The remainder of this paper is organized as follows: Section 2
presents a mathematical formulation of the uncertainty evolution
of real-time streamflow forecasts and introduces MMFE and its
assumptions. Section 3 describes the statistical tests of the
assumptions and the results. Section 4 illustrates the GMMFE mod-
el used to formulate the evolution of non-Gaussian forecast uncer-
tainties. Section 5 applies the GMMFE in evaluating the effect of
forecast uncertainty distributions on reservoir operations. Finally,
Section 6 contains the discussions and conclusions.
2. Methods

Streamflow forecasts are updated in real-time. At the beginning
of one time period, forecasts of streamflow in the subsequent time
periods are made based on currently available hydrologic informa-
tion. As time progresses and as more hydrologic information be-
comes available, the forecasts are dynamically updated. This
section introduces the MMFE, which describes this dynamic fore-
cast-updating process.
2.1. Mathematical formulation of uncertainty evolution

fs,t is denoted as the forecast made at period s for the streamflow
at period t (s must be less than or equal to t). The forecasts made at
period s form a vector Fs,� comprising fs,s+i (i = 0,1, . . .,h; h denotes
the forecast horizon) with lead time ranging from 0 to h periods,
i.e.,

Fs;� ¼ fs;s fs;sþ1 . . . fs;sþh
� �

ð1Þ

In subsequent periods s + 1, s + 2, . . .,Fs+1,�, Fs+2,�, . . ., are made. A
schematic of the rolling horizon process of a real-time streamflow
forecast with a forecast horizon h (h is set as 4 periods for example)
is given at the upper part of Fig. 1.
Time

F1,- F2,- F3,- F4,- F5,-

q5 q1 q2 q3 q4 q6 q7 q8 q9 

Timef1,5 f2,5 f3,5 f4,5 f5,5

q5 

e1,5 e2,5 e3,5 e4,5 e5,5

Forecast error:  
es,t= fs,t - qt

u2,5 u3,5 u4,5 u5,5
Forecast improvement: 
us,t= fs,t - fs-1,t

Fig. 1. Schematic of uncertainty evolution in real-time streamflow forecasting.
On one hand, Fs,� contains multiple forecasts of streamflow in
the subsequent h periods. On the other hand, streamflow qt at per-
iod t corresponds to multiple forecasts made at the precedent peri-
ods, as shown in the lower part of Fig. 1. The h + 1 forecasts ft�i,t

(i = h, . . .,1,0) corresponding to qt form a vector F�,t (F�,t is differen-
tiated from Fs,�)

F�;t ¼ ft�h;t ft�hþ1;t . . . ft;t
� �

ð2Þ

The relationship among fs,t (the estimated value), qt (the real va-
lue), and es,t (the forecast error) are additive [8,24,27]

es;t ¼ fs;t � qt ð3Þ

The forecast errors of F�,t also form a vector E�,t

E�;t ¼ ½ et�h;t et�hþ1;t . . . et;t � ð4Þ

with es,t (s = t � h, t � h + 1, . . ., t), forecast improvement us,t can be
defined as the difference between the forecast errors of two consec-
utive periods

us;t ¼ es;t � es�1;t

¼ ðfs;t � qtÞ � ðfs�1;t � qtÞ
¼ fs;t � fs�1;t

ð5Þ

As shown in Eq. (5) and Fig. 1, us,t represents the improvement
in fs,t (the period s forecast of qt) from fs�1,t (the previous period’s
forecast of qt). We have a total of h updates of us,t (s = t � h + 1,
t � h + 2, . . ., t) for qt, which correspond to the h + 1 elements in
E�,t and F�,t.

Assuming that the observation (denoted as ft,t) at the current
period is perfect,

ft;t ¼ qt ð6Þ

The relationship between es,t and us,t can be formulated as follows:

et;t ¼ 0
et�1;t ¼ et;t � ut;t ¼ �ut;t

et�2;t ¼ et�1;t � ut�1;t ¼ �ut;t � ut�1;t

. . .

et�hþ1;t ¼ et�hþ2;t � ut�hþ2;t ¼ �
Xh�2

i¼0

ut�i;t

et�h;t ¼ et�hþ1;t � ut�hþ1;t ¼ �
Xh�1

i¼0

ut�i;t

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð7Þ

By incorporating Eq. (7) into Eq. (3), forecast fs,t can be formulated
with qt and us,t (s = t � h + 1, t � h + 2, . . .,0)

ft;t ¼ qt

ft�1;t ¼ qt � ut;t

ft�2;t ¼ qt � ut;t � ut�1;t

. . .

ft�hþ1;t ¼ qt �
Xh�2

i¼0

ut�i;t

ft�h;t ¼ qt �
Xh�1

i¼0

ut�i;t

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð8Þ

The equation also indicates that

ft;t ¼ ft�1;t þ ut;t

ft�1;t ¼ ft�2;t þ ut�1;t

. . .

ft�hþ1;t ¼ ft�h;t þ ut�hþ1;t

8>>><
>>>:

ð9Þ

which implies that fs,t continues to be improved by us,t as s increases
from t � h to t, as shown in Fig. 1.
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2.2. Martingale model of forecast evolution (MMFE)

Eqs. (1)–(9) present a decomposition approach for modeling the
evolution of forecast uncertainty. The total forecast uncertainty,
represented by the forecast error, is formulated by single-period
forecast improvements. To characterize us,t (t = 1,2, . . .,T;
t � h < s 6 t), Heath and Jackson [8] proposed MMFE to describe
the sequence Us,� (s = 1,2, . . .T), i.e.,

Us;�¼ ½us;s us;sþ1 . . . us;sþh�1 � ð10Þ

In Eq. (10), Us;� comprises h elements, whereas Fs;� in Eq. (1)
comprises h + 1 elements because fs,s+h is a new forecast with the
largest lead-time but without the corresponding forecast
improvement.

MMFE makes the following four assumptions for Us,�: (1) the
mean values of us,s+i�1 (i = 1,2, . . .,h) are zero (unbiasedness); (2)
us,s+i�1 (i = 1,2, . . .,h) are Gaussian distributed (Gaussianity); (3)
us1,s1+i�1 (i = 1,2, . . .,h) and us2,s2+j�1 (j = 1,2, . . .,h) (s1 and s2 indi-
cate two different periods) are independent (temporal indepen-
dence); and (4) the distributions of us,s+i�1 (i = 1,2, . . .,h) do not
change with the value of s (stationarity). With these four assump-
tions, us,s+i�1 (s = 1,2, . . .,T; i = 1,2, . . .,h) can be described by the
variance–covariance matrix of Us;�

VCV ¼

var1 cov1;2 � � � cov1;h

cov2;1 var2 � � � cov2;h

..

. ..
. . .

. ..
.

covh;1 covh;2 � � � varh

2
66664

3
77775 ð11Þ

where vari denotes the variance of us,s+i�1, i.e., the magnitude of the
uncertainty of a single improvement, and covi,j represents the
covariance of us,s+i�1 and us,s+j�1. Considering the stationarity
Fig. 2. Daily updated streamflow
assumption, vari and covi,j are identical for all s, i.e., non-time-
varying.

Based on the assumptions of unbiasedness and Gaussianity, the
uncertainty of ft�i,t can be represented by the variance of the fore-
cast error, i.e., et�i;t ¼ ft�i;t � qt (Eq. (3)) and et�i;t ¼ �

Pi�1
j¼0ut�j;t (Eq.

(7)). Furthermore, based on the assumptions of temporal indepen-
dence and stationarity, the variance of et�i;t can be calculated by

varðet�i;tÞ ¼
Xi

j¼1

varj ð12Þ

Eq. (12) indicates that a longer lead-time i results in greater
forecast uncertainty. Moreover, the equation also implies that, as
time progresses towards t, the uncertainty of ft�i,t decreases.

The MMFE approach was developed and applied to the simula-
tion of demand forecast in supply chain management [8]. Zhao
et al. [27] applied MMFE to simulate deterministic, ensemble,
and probabilistic streamflow forecasts. Although not a forecast
model, MMFE remains a useful statistical model that can simulate
the uncertainty evolution of streamflow forecasts. In certain appli-
cations, MMFE can generate synthetic forecasts based on stream-
flow data and the variance–covariance matrix, thus presenting
possible forecast scenarios of the future [8,27]. The applications
of MMFE basically include two steps. The first step is the specifica-
tion of the variance–covariance matrix VCV (Eq. (11)), followed by
a synthetic generation of us,s+i�1 (i = 1,2, . . .,h) through the Cholesky
decomposition of VCV. By assembling us,s+i�1, U�;t can be obtained
as

U�;t ¼ ½ut�hþ1;t ut�hþ2;t . . . ut;t � ð13Þ

Furthermore, with U�;t and the given qt (t = 1,2, . . .,T), E�,t (Eqs.
(4) and (7)) and F�,t (Eqs. (2) and (8)) can be synthetically
generated.
forecasts of TGR in 2008.



44 T. Zhao et al. / Advances in Water Resources 57 (2013) 41–51
3. Test of model assumptions

MMFE provides an effective decomposition approach for model-
ing the stochastic process of forecast uncertainty evolution based
on the four assumptions. When applying the MMFE model to
real-world studies, the validity of the assumptions must be veri-
fied. This section applies real-world forecast data on the Three
Gorges Reservoir (TGR) to test the assumptions.

3.1. Description of data and statistical tests

TGR controls flooding events in the upper Yangtze River and
plays a key role in the flood protection of the middle and the low-
er reaches of this river [5,12,22]. To aid in the operation of the
TGR, inflow forecasts are made based on the main upstream flow,
the tributary flow from the Wu River, and the flow from the TGR
intervening basin [12]. The intervening basin has a catchment
area of 55,907 km2 (approximately 5.6% of the drainage area of
TGR) but contributes to 20% of the flood peaks of TGR inflow on
average [12,22]. The complex terrain of the intervening basin
makes the prediction of TGR inflow reliably at a long lead time
difficult. The current inflow forecast of TGR is updated daily with
a forecast horizon of 4 d. This study applies the forecast data of
the TGR from May to September in 2004–2009 to test the
assumptions of MMFE. Fig. 2 presents an example of the roll-
ing-horizon forecast of the largest flood in 2008. For the flood
peak occurring around August 16th (DOY 229), the forecast im-
proved as time progressed toward August 16th, finally ending
at zero at the time of observation.

To test the four assumptions of MMFE, the data processing pro-
cedure was employed as follows: First, the forecast error sequence
E�,t was calculated with the rolling horizon forecast Fs,� (Eqs. (3)
and (4)). The forecast update us,t was then calculated based on
the forecast error sequence (Eq. (5)). Finally, the forecast updates
were arranged as Us,� and U�,t (Eqs. (10) and (13)). Us,� and U�,t

in May/June (MJ, the pre-flood season) and July/August/September
(JAS, the main flood season) were separated and tested indepen-
dently. The statistical tests of the assumptions and the dataset
are summarized in Table 1.

(1) Test of unbiasedness: The null hypothesis is that the mean
value of us,s+i�1 (i = 1,2, . . .,4) in Us,� is zero. The test applies
the bootstrap method to draw the N independent random
sample sets with replacements from the sample population
[7]. The confidence interval of the mean value of us,s+i�1 is
estimated based on the mean values of N random sample
sets. If the confidence interval contains zero, the null
hypothesis is accepted; otherwise, the null hypothesis is
rejected.

(2) Test of Gaussianity: The null hypothesis is that the us,s+i�1

(i = 1,2, . . .,4) fits Gaussian distribution. The Shapiro–
Wilk test investigates the null hypothesis that the samples
came from a normally distributed population. If us,s+i�1 does
not fit Gaussian distribution, the test rejects the null
hypothesis.
Table 1
Statistical tests and datasets applied to testing the assumptions of the MMFE.

Assumptions Statistical tests Datasets

Unbiasedness Bootstrap based test Us,� in MJ and
JAS

Gaussianity Shapiro–Wilk test Us,� in MJ and
JAS

Temporal
independence

Spearman correlation U�,t and Us,� in
JAS

Stationarity Two-sample Kolmogrov–Smirnov
test

Us,� in MJ and
JAS
(3) Test of temporal independence: The null hypothesis is that
U�,t = [ut�3,t, ut�2,t, ut�1,t, ut,t] (the improvements of forecast
of qt at different periods) are independent. The correlation
assesses the linear dependence relationship between two
random variables. If no dependence relationship exists, the
correlation is zero. As a comparison, this study also tests
the cross-correlation among Us,� = [us,s, us,s+1, us,s+2, us,s+3]
(the updates made at the same period). Considering that
us,t can be non-Gaussian, the non-parametric Spearman cor-
relation is used, and the corresponding p-value (i.e., the
probability of obtaining a test statistic at least as extreme
as the one that was actually observed) indicates statistical
significance.

(4) Test of stationarity: The null hypothesis is that us,s+i�1

(i = 1,2, . . .,4) in MJ and us,s+i�1 (i = 1,2, . . .,4) in JAS have the
same distribution. The two-sample Kolmogrov–Smirnov test
is applied to compare the cumulative distribution functions
(CDF) of us,s+i�1 in MJ (the pre-flood season) and JAS (the
main flood season). If the two CDFs are different, the test
rejects the null hypothesis; otherwise, the null hypothesis
is accepted.

The tests are conducted using the Hypothesis Test Toolbox of
Matlab 2010a.
3.2. Test of unbiasedness

Table 3 presents the mean values of the sample and the 95%
confidence intervals derived by the bootstrap test. All mean values
are positive, which implies that the forecast of TGR is biased and
tends to underestimate the actual streamflow. The null hypotheses
for us,s (MJ), us,s+2 (MJ), us,s+3 (MJ), us,s+2 (JAS), and us,s+3 (JAS) are re-
jected. Although the confidence intervals of us,s+1 (MJ), us,s (JAS),
and us,s+1 (JAS) include the zero value, they are near the lower
bound. Based on Table 2, the null hypothesis that the mean value
of us,s+i�1 (i = 1,2, . . .,4) is zero is generally rejected. The mean val-
ues of [us,s, us,s+1, us,s+2, us,s+3] are positive, and their confidence
intervals also tend to be positive. Therefore, the forecasts of TGR
in both the pre- and main flood seasons tend to be underestima-
tions of the actual streamflow.
3.3. Test of Gaussian distribution

In the test for Gaussianity, the Shapiro–Wilk test rejects the null
hypothesis when the significance level is set at 1%, which means
that the distribution of us,s+i�1 (i = 1,2, . . .,4) is unlikely (the proba-
bility is less than 1%) to be Gaussian. To illustrate the non-Gaussian
distribution, the quantiles of the samples [us,s, us,s+1, us,s+2, us,s+3] are
plotted against the theoretical quantiles from the Gaussian fits in
Fig. 3. If the two distributions being compared are similar, there
would have been a linear relationship between the quantiles.
However, the quantile–quantile plot shows no linear relationship
between the quantiles. Moreover, the positive and negative ex-
treme values of the samples have a wider range than the Gaussians.
Table 2
Sample means and 95% confidence intervals for MJ and JAS.

The pre-flood season (MJ) The main flood season (JAS)

Sample
mean (m3/s)

95% confidence
interval (m3/s)

Sample
mean (m3/s)

95% confidence
interval (m3/s)

us,s 119.0 [2.7,265.0] 16.5 [�79.1,131.7]
us,s+1 137.1 [�2,317.3] 82.9 [�41.8,243.8]
us,s+2 306.3 [144.2,497.1] 336.4 [162.3,536.6]
us,s+3 368.5 [194.0,591.0] 693.2 [466.0,953.7]



Table 3
p-values of the two-sample Kolmogrov–Smirnov test of the distributions of forecast
improvements.

us,s us,s+1 us,s+2 us,s+3

MJ vs. JAS 0.078 0.020 0.055 0.051
July vs. August 0.892 0.175 0.219 0.402
August vs. September 0.893 0.829 0.342 0.123
September vs. July 0.924 0.591 0.479 0.362
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Fig. 3 confirms the rejection of the null hypothesis of Gaussian dis-
tribution in the Shapiro–Wilk test. Furthermore, we find that the
approximation of forecast improvements by Gaussian distributions
results in the loss of information on extreme values [19].

3.4. Test of temporal independence

U�,t = [ut�3,t, ut�2,t, ut�1,t, ut,t] represents the forecast improve-
ments targeted at the same qt. The time periods when the forecast
improvements were made are different. The scatter plots of U�,t are
presented in Fig. 4. The corresponding p-values for the cross corre-
lations of U�,t are greater than 5%, which suggests an acceptance of
the null hypothesis of temporal independence, i.e., forecast
improvements made at different periods are independent. Further-
more, the scatter plots of Us,� = [us,s, us,s+1, us,s+2, us,s+3] (forecast
improvements made at the same period s) are presented as a com-
parison. Fig. 5 shows that Us,� exhibits strong cross correlations,
with the p-values of the correlations being less than 1%.

The forecast improvements can generally be attributed to the
updates of hydrological information, e.g., watershed initial
conditions and weather forecasts [10,16,20]. The progression
U�,t = [ut�3,t, ut�2,t, ut�1,t, ut,t] results from updates of hydrologic
information at different periods, whereas the collection Us,� = [us,s,
us,s+1, us,s+2, us,s+3] can be attributed to the update of hydrologic
information at the same period. The independence of U�,t and the
dependence of Us,� implies that the update of hydrologic informa-
tion can exhibit temporal independence relationships. Otherwise,
more information could be inferred from the currently available
hydrologic information.

3.5. Test of stationarity

The two-sample Kolmogrov–Smirnov test examines the similar-
ity of the CDF of us,s+i�1 (i = 1,2, . . .,4) in MJ and JAS. The test also
Fig. 3. Quantile–quantile plot of the sample quantiles of forecast impr
compares us,s+i�1 (i = 1,2, . . .,4) in July with August, August with
September, and September with July. The p-values, i.e., the proba-
bility of obtaining a test statistic that is at least as extreme as the
observed one, of the tests are listed in Table 3. The p-values in the
case MJ vs. JAS are lower than 0.100, which indicates that the prob-
ability that the distributions of us,s+i�1 (i = 1,2, . . .,4) in the pre- and
the main flood seasons are the same is less than 10%. Moreover, the
p-values of the other three cases (July vs. August, August vs. Sep-
tember, and September vs. July) are larger than 0.100, implying
that the distributions of us,s+i�1 (i = 1,2, . . .,4) in July, August, and
September are likely to be the same. The results shown in Table 3
generally suggest that us,s+i�1 (i = 1,2, . . .,4) is non-stationary in the
pre- and main flood seasons, but us,s+i�1 can be stationary during
the main flood season.

3.6. Implications from statistical tests

The results of the statistical tests based on streamflow forecast
records of TGR illustrate that: (1) real-world forecasts are biased
and tend to underestimate the actual streamflow; (2) the forecast
improvements do not follow a Gaussian distribution, and their dis-
tributions are heavy-tailed; (3) forecast improvements made at dif-
ferent periods are independent, but those made at the same period
are dependent; and (4) forecast improvements are not stationary.

The four assumptions of MMFE enable applications of the vari-
ance–covariance matrix to simulate the evolution of forecast
uncertainty [8,27]. The rejections of unbiasedness and Gaussianity
indicate that variance–covariance is insufficient to simulate the
evolution of real-world forecast uncertainty and that more infor-
mation about statistical distribution is needed. The rejection of sta-
tionarity indicates that different distributions should be specified
for forecast improvements in different seasons. Nevertheless, the
acceptance of temporal independence enables the period-by-peri-
od independent simulation of Us;� (s = 1,2, . . .,T).

In the following section, we focus on the handling of biased
non-Gaussian forecast uncertainty during the main flood season.

4. Accounting for non-Gaussian forecast uncertainties

This section proposes a generalized martingale model called
GMMFE to deal with biased, non-Gaussian forecast improvements.
The new model incorporates the normal quantile transform (NQT)
method into MMFE. This section demonstrates the applications of
ovements against the theoretical quantiles from the Gaussian fits.



Fig. 4. Scatter plots and Spearman cross correlations of U�,t in the main flood season.
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the new model using simulated and observed forecasts from the
TGR.

4.1. Generalized martingale model

The MMFE model deals with unbiased Gaussian samples and
synthesizes the unbiased Gaussian forecast improvements based
on the variance–covariance matrix [8,27]. However, the non-
Gaussian properties of forecast improvements hinder the applica-
tion of MMFE in real-world studies. To bridge this gap, this study
integrates the NQT method, which can convert biased non-Gauss-
ian distributed variables into unbiased Gaussian variables [11,15],
with the conventional MMFE model. This new model GMMFE com-
prises three steps: NQT, MMFE, and inverse-NQT, as shown in
Fig. 6.

(1) Step 1 is the transformation of variables by NQT. us,s+i�1

(i = 1,2, . . .,h) are converted into standard Gaussian random
variables u0s,s+i�1 (i = 1,2, . . .,h) based on
u0s;sþi�1 ¼ CDF�1
GaussianðCDFiðus;sþi�1ÞÞ ð14Þ
where CDFiðÞ is the CDF of us,s+i�1, and CDF�1
GaussianðÞ is the inverse of

the CDF of standard Gaussian distribution. Eq. (14) comprises two
sub-steps. First, CDFiðÞ transforms us,s+i�1 into the corresponding
cumulative probability, which is uniformly distributed between 0
and 1. Thereafter, CDF�1

GaussianðÞ converts the cumulative probabilities
into the standard Gaussian random u0s;sþi�1. The principle behind
NQT is similar to that of the quantile–quantile plot [19] in that
the two random variables are matched based on the values of their
cumulative probability.
(2) Step 2 is the application of MMFE to the transformed vari-
ables. The variance–covariance of u0s,s+i�1 (i = 1,2, . . .,h) is cal-
culated, after which u0i (i = 1,2, . . .,h) is generated based on
the Cholesky decomposition of the variance–covariance
matrix. Both u0i (i = 1,2, . . .,h) and u0s,s+i�1 (i = 1,2, . . .,h) are
standard Gaussian random variables that have the same
cross correlation relationships.

(3) Step 3 is the inverse transformation of the variables by NQT.
u0i (i = 1,2, . . .,h) and forecast improvements ui (i = 1,2, . . .,h)
are generated with the inverse application of NQT
ui ¼ CDF�1
i ðCDFGaussianðu0iÞÞ ð15Þ
In Eq. (15), CDFGaussianðÞ converts u0i into the corresponding
cumulative probability, whereas CDF�1

i ðÞ converts the cumulative
probabilities into new forecast updates ui (i = 1,2, . . .,h). Notably,
CDF�1

i ðÞ plays an important role in determining the statistical dis-
tribution of ui (i = 1,2, . . .,h). For example, the substitution of
CDF�1

i ðÞ with the inverse of the CDFs of other distributions, e.g.,
Nðli;r2

i Þ, enables ui to fit the Gaussian distribution with mean li

and standard deviation ri.
When applying GMMFE to real-world cases, these three steps

are needed, and special attention should be focused on fitting the
CDF for the given samples of us,s+i�1 (i = 1,2, . . .,h). However, the
first step of NQT for handling given samples is unnecessary for
hypothetical studies. On the other hand, the two steps of MMFE
and inverse-NQT are needed. The variance–covariance matrix
should be set for Step 2 to account for the dependence relation-
ships [8,9]. CDF�1

i ðÞ (i = 1,2, . . .,h) should be specified for Step 3 to
determine the statistical distribution of forecast improvements.



Fig. 5. Scatter plots and Spearman cross correlations of Us,� in the main flood season.
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In a simple case where forecast improvements in each period
(Eq. (10)) are assumed to be independent, only Step 3 is needed,
and ui (i = 1,2, . . .,h) can be individually simulated. The streamflow
forecast can then be synthesized based on Eqs. (1)–(9).

4.2. Simulation of streamflow forecast

The GMMFE model is applied to generate synthetic streamflow
forecast improvements for the TGR during the main flood season of
2008 (Fig. 2). The CDF of us,s+i�1 (i = 1,2, . . .,h) samples are esti-
mated by the non-parametric kernel density function [17]. To
examine the effects of the assumptions of unbiasedness and Gaus-
sianity, three cases are designed:

(1) In the case UG, CDF�1
i ðÞ in Eq. (15) is substituted by the

inverse of the CDF of Nð0;r2
i Þ, and ui fits unbiased Gaussian

distribution;
(2) In the case BG, CDF�1

i ðÞ is substituted by the inverse of the CDF
of Nðli;r2

i Þ, and ui fits the biased Gaussian distribution; and
(3) In the case NG, CDF�1
i ðÞ is represented by the inverse of the

kernel cumulative density function, and ui fits the non-
Gaussian distribution. In the cases of UG and BG, li and ri

denote the mean and the standard deviation of the us,s+i�1

(i = 1,2, . . .,h; h = 4) samples of the main flood season in
2008, respectively.

The GMMFE model generates forecast improvements at each
period (Eq. (10)) and simulates streamflow forecast (Eqs. (7) and
(8)). We run 100 Monte-Carlo simulations with GMMFE and derive
the forecast errors of synthetic forecast with a lead-time of 1 d to
4 d for the three cases. The mean, standard deviation (stdev), and
the coefficient of skewness (Cs) of the forecast errors are presented
by boxplots, as shown in Fig. 7. The boxplots illustrate the median
as a central mark, the 25th and 75th percentiles as edges, the range
of data points as whiskers, and the outliers as plus signs. For com-
parison, the statistics of the forecast errors of the TGR streamflow
forecast records are represented by the circles linked by a line in
Fig. 7.



Fig. 7. Distribution of the means, standard deviations, and coefficients of skewness of the observed and simulated forecast errors (circles linked by a line represent observed
statistics, whereas boxplots are for simulated statistics).
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The effect of the violation of the unbiasedness assumption is de-
tected by the mean value in the case UG, which shows that this
assumption results in the underestimation of the forecast error
by approximately 1000 m3/s when the lead time is 4 d. The effect
of the violation of the Gaussianity assumption is illustrated by
the Cs values in the cases of UG and BG, which indicates that this
assumption results in the underestimation of the skewness of the
forecast errors because Gaussian distribution is symmetric. The
case of NG considers both unbiased and non-Gaussian forecast
uncertainty, which results in statistics of synthetic forecast errors
similar to actual values. In summary, the three cases demonstrate
the effectiveness and generality of the GMMFE model in simulating
evolution of forecast uncertainties.
5. Effect of forecast uncertainty distribution on reservoir
operation

This study examines the non-Gaussian forecast uncertainties
for the TGR. Notably, real-world forecast uncertainties are complex
and are dependent on forecast models and hydrological character-
istics. Thus, such uncertainties can be Gaussian, biased Gaussian, or
non-Gaussian. Simply assuming a Gaussian distribution for the
streamflow forecast may set incorrect expectations on the opera-
tion results in some cases. The GMMFE model is capable of simu-
lating forecast uncertainties with different statistical
distributions. Therefore, this section evaluates the effects of unbi-
ased Gaussian, biased Gaussian, and non-Gaussian forecast uncer-
tainties on reservoir operation using streamflow forecasts
generated by GMMFE.
5.1. Rolling-horizon reservoir operation

Reservoir operation utilizes a rolling-horizon process to incorpo-
rate the dynamically updated streamflow forecast into decision-
making [3,18,28]. This study employs a hypothetical reservoir and
synthesizes streamflow forecasts for reservoir operation. The reser-
voir operation model aims to maximize total utility, i.e.,

max
Xn

i¼1

giðriÞ

s:t:

si þ xi � ri ¼ siþ1 ði ¼ 1; . . . ;nÞ
smin 6 si 6 smax ði ¼ 1; . . . ;nÞ
s1 ¼ sini

snþ1 ¼ send

ri P rmin

8>>>>>><
>>>>>>:

ð16Þ

where i is the index of time periods ranging from 1 (the current per-
iod) to n (the operation horizon); si denotes the reservoir storage at
the beginning of period i; xi and ri represent the period i’s stream-
flow forecast and release decision respectively; smin and smax are
the minimum and the maximum of reservoir storage, respectively;
sini and send denote initial and ending storage, respectively; and rmin

is the lower bound of reservoir release.
In the reservoir operation with a study horizon of T periods, the

rolling-horizon process comprises the following steps:

(1) Release decisions are made based on the forecasts made at
the current period s
½ x1 x2 . . . xn � ¼ ½ fs;s fs;sþ1 . . . fs;T � ð17Þ
(2) The current release decision r1 is implemented, and r1 is
saved as rs.

(3) The next period s + 1 is considered, and the initial storage
and streamflow forecast are updated:
sini ¼ s1 þ qs � rs ð18Þ

½ x1 x2 . . . xn � ¼ ½ fsþ1;sþ1 fsþ1;sþ2 . . . fsþ1;T � ð19Þ



Fig. 8. Relationship of forecast uncertainty with the mean and standard deviation
of utility improvements (smax = 0.50).
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These three steps are repeated until the end of the study hori-
zon T. The operation horizon n in Eq. (16) notably reduces from T
to 1 as s progresses from 1 to T. In each period, the current release
decision is saved, and the single-period utility is evaluated. The to-
tal utility is the sum of all single-period utilities. Finally, the total
utility of the rolling-horizon reservoir operation can be compared
with that of the baseline scenario, which is defined as a case with-
out any reservoir regulation. The utility improvement indicates the
value of forecast-based reservoir operation.

5.2. Experiment setting

The experiment is set up based on the reservoir operation mod-
el given by Zhao et al. [27]. The reservoir takes a concave utility
function, i.e., ri exhibits a diminishing marginal utility (for instance,
the case of water supply operation)

giðriÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ri�rmin
rmax�rmin

q
ðrmax P ri P rminÞ

1 ðri > rmaxÞ

(
ð20Þ

The parameters of the reservoir are as follows: smin ¼ 0,
rmin = 0.2, rmax = 1.2, and sini ¼ send ¼ smax

2 . The study horizon T is
set as six periods. Two scenarios are set for smax, i.e., 0.5 and 2.0,
examining the effects of reservoir storage capacity [21,28].

The reservoir inflow is generated using a simplified Thomas–
Fiering model, i.e.,

qtþ1 ¼ lþ qflowðqt � lÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

flow

q
ðlCvÞd ð21Þ

where qt denotes streamflow in period t; d is a standard Gaussian
random number for Monte-Carlo simulation; and the parameters
are set as l = 1, qflow = 0.4, and Cv = 0.3.

The streamflow forecast is generated by GMMFE. To simplify
the formulation, us,t (t = s, . . .,T) are treated as independent and
identically distributed random variables, and us,t is simulated indi-
vidually. The skewedness in forecast errors (Fig. 7) is considered by
setting the positively and negatively skewed distributions for non-
Gaussian forecast uncertainty.

Four cases are designed:

(1) In the case of UG, us,t is from an unbiased Gaussian distribu-
tion with a mean of 0 and a stdev of r
us;t ¼ rd; d � Nð0;12Þ ð22Þ
(2) In the case of BG, us,t is from a biased and Gaussian distribu-
tion with a mean of D and a stdev of r
us;t ¼ Dþ rd; d � Nð0;12Þ ð23Þ
(3) In the case of NGn, us,t is from a negatively-skewed log-nor-
mal distribution with a mean of D and a stdev of r
us;t ¼ Dþ rð2� dÞ; d � Lognð2;12Þ ð24Þ
(4) In the case of NGp, us,t is from a positively-skewed log-nor-
mal distribution with a mean of D and a stdev of r
us;t ¼ Dþ rðd� 2Þ; d � Lognð2;12Þ ð25Þ
In Eqs. (24) and (25), d is from the log-normal distribution with
a mean of 2 and a stdev of 1.

By fixing D as 0.05 and varying r from 0.02 to 0.20, this study
generates streamflow forecasts for the four defined uncertainty
distributions using GMMFE. The forecasts are incorporated into
the rolling horizon reservoir operation. The reservoir optimization
model (Eq. 16) is solved by improved dynamic programming (IDP,
[29]), which takes advantage of concavity of objective function and
improves computational efficiency of conventional dynamic pro-
gramming. The effects of forecast uncertainty distribution on res-
ervoir operation among the four cases are analyzed by comparing
the utility improvements from the baseline case without any reser-
voir regulation.

5.3. Result analysis

This study conducts 100 Monte–Carlo experiments for each r
value and evaluates the utility improvements for the four cases
of forecast uncertainty. Fig. 8 presents the utility improvements
when reservoir capacity smax is 0.50. The applications of stream-
flow facilitate utility improvements in comparison with the base-
line case. The mean of the utility improvements decreases, and
the stdev of utility improvements tends to slightly increase with
increasing r. Comparing the UG case with the three other cases,
the presence of D in the BG, NGn, and NGp cases reduces the mean
utility improvements and contributes to the increase in standard
deviation.

Fig. 9 further presents the utility improvements when reservoir
capacity smax = 2.0. Compared with Fig. 8, the applications of
streamflow forecast bring about greater but also more variable
utility improvements. In the BG, NGn and NGp cases, there are
marginal differences in terms of the mean of utility improvements.
Moreover, there are minimal differences in the stdev of the utility
improvements when r is small, but major differences in stdev are
observed as r increases. The stdev of the utility improvements
exhibits the most rapid increase in the NGp case (biased and pos-
itively-skewed forecast uncertainty distribution), followed by BG
(biased and Gaussian distribution), NGn (biased and negatively-
skewed distribution), and UG (unbiased and Gaussian distribution)
cases. A larger reservoir can regulate streamflow at a longer time-
frame and exploit forecasts with a longer lead time [21]. However,
a streamflow forecast with a longer lead time involves greater
uncertainty (Eq. (12)). The effects of the non-Gaussian forecast
uncertainty on the reservoir operation are greater in Fig. 9 than
in Fig. 8. This finding implies that more attention should be focused
on the non-Gaussian characteristics of forecast uncertainty in the
operation of larger reservoirs. Given that unbiased-Gaussian distri-
butions are often simply assumed for forecast uncertainties in real
cases, Figs. 8 and 9 suggest that this assumption results in the over-
estimation of the utilities from the applications of the streamflow
forecast if the actual uncertainties are not unbiased-Gaussian dis-
tributed. Therefore, more attention should be paid to evaluating



Fig. 9. Relationship of forecast uncertainty with the mean and standard deviation
of utility improvements (smax = 2.00).
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the statistical distribution of forecast uncertainty before using
streamflow forecasts.

Furthermore, the benefit from streamflow forecasts in reservoir
operations may vary considerably because of the dependence on a
number of factors, e.g., hydrological characteristics, objective
functions, and physical constraints [14,21,27]. Thus, the effect of
forecast uncertainty distribution on reservoir operations may also
vary on a case-by-case basis. However, properly estimating the
forecast uncertainty distribution is evidently necessary before
utilization, and the GMMFE model provides a general tool to
address this issue.
6. Discussions and conclusions

Streamflow forecasts are dynamically updated in real-time,
resulting in a process of forecast evolution. The martingale model
of forecast evolution (MMFE) provides a conceptual statistical
approach for modeling this process. The applicability of MMFE to
real-world data depends on four assumptions, i.e., unbiasedness,
Gaussianity, temporal independence, and stationarity. This study
conducts statistical tests on these four assumptions using stream-
flow forecast data on the Three Gorges Reservoir (TGR) from 2004
to 2009. The results illustrate that (1) streamflow forecasts are
negatively biased; (2) forecast uncertainties are non-Gaussian
and heavy-tailed; (3) forecast improvements made at different
periods exhibit temporal independence, whereas those made at
the same period are dependent; and (4) forecast improvements
are non-stationary, and their distributions can vary based on the
different seasons of the year.

To address the challenges raised by the statistical tests, this
study proposes a new model GMMFE to deal with biased non-
Gaussian forecast uncertainties by combining the normal quantile
transform (NQT) method with the MMFE model. The GMMFE mod-
el comprises three steps. First, the samples of forecast improve-
ment are converted into Gaussian random numbers by NQT to
obtain the variance–covariance matrix (VCV). Second, new Gauss-
ian random numbers are generated by MMFE with the VCV. Finally,
new samples of forecast improvements are generated through the
inverse application of NQT. We present a study that synthesizes
the streamflow forecasts with the GMMFE model, which illustrates
the effectiveness and generalizability of the GMMFE.

Based on the characteristics of generality, the GMMFE model is
capable of simulating forecast uncertainties with different statisti-
cal distributions. Therefore, this paper evaluates the effect of
unbiased Gaussian, biased Gaussian, and non-Gaussian forecast
uncertainties on reservoir operations, which shows that incorrect
assumptions on uncertainty distribution can results in the overes-
timation of reservoir operation utility. Thus, special attention
should be paid to the characteristics of uncertainty distribution
when employing forecasts in real-time operations. The proposed
GMMFE model provides an effective and generalized tool for
addressing this issue.
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