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Reservoi r operation optimization (ROO) is a complicated dynamical ly constrained nonlinear problem that 
is important in the context of reservoir system operation. In this study, parallel deterministic dynamic 
programming (PDDP) and a hierarchic al adaptive genetic algorithm (HAGA) are proposed to solve the 
problem, which involves many conflicting objectives and constraints. In the PDDP method, multi-threads 
are found to exhibit better speed-up than single threads and to perform well for up to four threads. In the 
HAGA, an adaptive dynamic parameter control mechanism is app lied to determine parameter settings,
and an elite individual is preserved in the archive from the first hierarchy to the second hierarchy. Com- 
pared with other methods, the HAGA provides a better operational result with greater effectiveness and 
robustness becau se of the population diversity created by the archiv e operator . Comparison of the results 
of the HAGA and PDDP shows two contradictory objectives in the ROO problem-economy and reliability.
The simulation results reveal that: compared with proposed PDDP, the proposed HAGA integrated with 
parallel model app ears to be better in terms of power generation benefit and computational efficiency.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction 

The water resource crisis is increasingly becoming challenging 
and complicated , posing a dilemma for stakeholder s desiring effec- 
tive water allocation. Reservoir operation optimization (ROO) facil- 
itates not only water resource allocation that yields maximum 
benefits with respect to multiple objectives in areas such as agri- 
culture, energy, and industry but also rational water exploitation 
and hydropower generation. Moreover, for obtaining solutions to
ROO problems, advanced computational technology and improved 
algorithms are used for enhancin g the computation efficiency. ROO 
can be used for formulating , analyzing , and solving operation opti- 
mization problems in water resource planning (Loucks, Stedinger,
& Haith, 1981; Yeh, 1985 ).

Most methods used for ROO analysis involve conventi onal opti- 
mization algorithms and various metaheurist ic algorithms. Over 
the past several decades, a wide range of methods have been pro- 
posed to solve ROO problems . Those reported to be effective are 
linear programmin g (LP) (Jabr, Coonick, & Cory, 2000 ), nonlinear 
programmin g (NLP) (Chen, 2007; Takriti & Krasenbrink, 1999 ),
quadratic programming (QP) (Papageorgiou & Fraga, 2007 ), and 
Lagrangian relaxation (LR) (Hindi & Ghani, 1991; Keib, Ma, & Hart,
1994). Dynamic programming (DP) is a powerful optimization 
techniqu e that is applied to ROO and is considered to be a conven- 
tional optimizati on algorithm in reservoir operation . Among the 
traditional optimization techniques for reservoir operation, DP
(Travers & Kaye, 1998 ) boasts high popularity. In other methods,
there may be difficulties in finding the optimal solution. In the case 
of LP, the nonlinear and unsmooth characteri stics of ROO problems 
are often ignored during linearization, generating large errors in
the optimal operation. In NLP and QP, the objective function should 
be continuous and differentiab le. Moreover, some approximat ions 
are necessar y in the formulation when NLP and QP are used, and 
they may lead to inaccurate solutions when an continuous and dif- 
ferentiabl e objective function is used. In LR, Lagrange multiplier s
with updating strategy are used, and therefore, the method suffers 
from oscillatio ns in the optimal result. In contrast, DP imposes no
restrictio ns on the unsmooth and nonconvex nature of the ROO 
problem, which makes it superior. The ROO problem is a highly 
constrain ed nonlinear discrete dynamic optimizati on problem 
solved by complete enumeration with a DP solver.

The theory of DP, first used by Bellman in the early 1950s (Bell-
man, 1957 ), resulted in the principle of optimality. This principle is
useful for solving problems with a separated monotonic criterion 
function. DP is a method for efficiently solving a broad range of
searching and optimization problems. It involves the use of the 
principle of optimality in the optimal region, and a recursive algo- 
rithm for dividing a decision process into several interrelated 
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stages in terms of time, space, etc. Generally, the major objective of
the ROO problem at a hydropower station aims to maximize the 
total power generation by utilizing the limited water resource for 
future stages. The application of DP to ROO is popular since the 
problem has been formulat ed as a differential DP problem. The the- 
ory of DP for large-scal e problems has been studied by Yakowitz
(1982), who reviewed the use of the method for solving a water re- 
source planning problem. DP models can be classified into two cat- 
egories: stochastic dynamic programmin g models with 
uncertainty factors, and deterministic DP (DDP) models. For reser- 
voir operating rule generation, Karamouz and Houck (1987) com-
pared stochastic DP (SDP) and DDP with regression (DPR). They 
found that the DPR model performs better for large reservoirs with 
capacities exceedin g 50% of the mean annual flow. DDP has also 
been applied to an ROO problem in which uncertain factor evalua- 
tion is not considered , and it may actually provide the optimal re- 
sult. Although the DDP can solve the reservoir optimization 
problem, the high dimensionality of the problem poses difficulties
and might not converge within a reasonable time, especially for 
large-scale hydropower systems. The practical limitation of DP is
obvious as the number of possible decisions increases with the 
number of reservoirs. Further, the computational accuracy should 
be improved , which would result in a low computational effi-
ciency. Therefore, the implementation of DDP in parallel, which 
would reduce the run-time, would significantly increase the effi-
ciency of such parallel model.

Some hydraulic models, such as TRENT, CalTWiMS, TELEMAC,
and RMA, use the message passing interface (MPI) (Gropp, Lusk,
& Skjellum, 1994 ) and domain decompositi on for simulations in
parallel. Recently, the JFLOW diffusive wave model used graphics 
processing units (GPUs). However, these parallel tools hide a con- 
siderable amount of complexity. The computational strength of
modern micropro cessors has increased with the developmen t of
various commercial multi-threaded processors. Nowaday s, the 
most popular parallel systems are based on shared memory. We
can use the multi-threadin g feature of the hardware, which distin- 
guishes these systems from traditional shared multi-processor sys- 
tems, distributed memory systems, or hybrid distribut ed-shared 
memory systems. Consequentl y, increasing the thread-leve l paral- 
lelism becomes paramount for achieving the maximum potential 
performanc e from shared-memor y multi-proce ssor systems built 
with shared-m emory threading processors. The parallel imple- 
mentation of DDP involving complex data structure s and memory 
allocation is used for ROO with a shared memory system that em- 
ploys open multiprocessing (OpenMP). OpenMP (Chapman, Jost, &
van der Pas, 2007 ) is a set of compiler directives with library rou- 
tines that is used for creating an application program interface 
(API) for supporting multi-platfo rm shared-mem ory parallel pro- 
gramming in FORTRAN, C, and C++ on all architectures, including 
UNIX and Windows NT platforms. Key advantages of OpenMP in- 
clude easy implementati on and the minimal recoding required 
for implementati on in parallel. An OpenMP code can be developed 
on one platform and deployed on any other platform installing an
OpenMP compiler. These parallel machines are built upon a set of
processors that have access to a common memory by exchanging 
data between concurrent tasks without communi cating with any 
processor and that communi cate data by writing or reading shared 
data. We adopt a parallel DDP (PDDP) FORTRAN code that is imple- 
mented in parallel for ROO.

Owing to the lack of computational efficiency for ROO in the 
case of DP, modern heuristic stochasti c search algorithms such as
the genetic algorithm (GA) (Baskar, Subbaraj, & Rao, 2003; Chiang,
2007), evolutionary programmin g (EP) (Basu, 2004 ), simulated 
annealing (SA) (Basu, 2005 ), particle swarm optimization (PSO)
(Cai, McKinne y, & Lasdon, 2001 ), and the differential evolution 
algorithm (DE) have been extensively used to solve the ROO prob- 
lem without ant restriction on the unsmooth and nonconvex char- 
acteristics of the problem. In recent decades, the GA has become 
widely used for the application of global optimization to ROO. Be- 
cause of the increase in the complexi ty of ROO with the dimension- 
ality, a large-scale ROO problem with an enormous number of
variables and constrain ts must be decompo sed into sub-problems 
to enhance the robustness of searching. Therefore, ROO problems 
can be alternativel y solved by the GA. The genetic algorithm (Bas-
kar et al., 2003 ) was formally introduced in the 1970s by John Hol- 
land (Holland, 1992 ). It has been proved to be effective in solving 
optimization and search problems in many fields of study (Chen,
1998; Goldberg , 1989; Karr, 1991; Kung & Chen, 1997; Lin,
1997). The GA is an adaptive heuristic search algorithm that mim- 
ics the principles laid down in Darwin’s theory of evolution and 
successively applies genetic operators such as selection, crossover 
(recombination), and mutation to iteratively improve the fitness of
a population and reach the global optimum in the search space. It
is one of the most promising algorithms , and the population-by -
population method is the most important characterist ic of the GA
when compared to the point-to-poi nt method of DP (Goldberg &
Kuo, 1987 ). In recent decades, the GA has become popular for the 
applicati on of global optimizati on to reservoir planning and man- 
agement for scientific research and in the field of engineering 
(Cai et al., 2001; Chaves & Chang, 2008; Chen & Chang, 2007,
2009; Huang, Yuang, & Lee, 2002 ). However, the GA has not really 
been suitable for complex nonlinear problems like ROO problems.

The GA starts with a randomly generated initial population and 
improves the fitness of solutions through iterations by implement- 
ing operator s such as scheme selection (reproduction), crossove r,
and mutation. A crossover operation leads to a mixture of chromo- 
somes in the offspring without creating new allelic material. This 
can lead to slow convergence toward the same sub-optimal solu- 
tion. Srinivas and Deb (1995) put forward the adaptive genetic 
algorithm (AGA) with adaptive crossover and mutation. The prob- 
abilities of crossover and mutation vary depending on the fitness
values of the solutions, thus improvin g the convergence rate and 
robustnes s (Chen, Chen, & Chiang, 2009 ). Solutions with high fit-
ness are preserved, while those with sub-average fitness are com- 
pletely disrupted. However, the AGA is still challenging without 
the consideration of the initial population diversity. Preserving 
population diversity is crucial for a successful and efficient search 
of complex multimodal response surfaces. Lack of population 
diversity often results in convergence to a sub-optimal solution,
whereas excessive diversity results in the inability to further refine
solutions for closer approximation . As the number of decision vari- 
ables increases in ROO problems, the search process becomes inef- 
fective within the vast amount of GA chromosomes and results in
slow evolution between consecutive generations. Consequentl y,
the probability of converging to the optimal solution decreases 
sharply. In this paper, an improved AGA was proposed for solving 
ROO problems. We used the hierarchical structure of the archive 
scheme to change population diversity, and we proposed a hierar- 
chical adaptive genetic algorithm (HAGA).

Failure to improve the efficiency of and remove the deficiency
in the algorithm used for solving the ROO problem may lead to
either excessive computation or unsatisfactor y solutions. In this 
study, we also discussed the prime characteristics of ROO problems 
and a DDP algorithm with a parallel model. We also apply im- 
proved conventional and metaheurist ic algorithms to ROO. A
new parallel DDP (PDDP) approach incorporating both computa- 
tional efficiency and optimal decisions was presented for the Three 
Gorges Project (TGP). An improved AGA (HAGA) incorporating 
optimal decisions was applied to the TGP, and the parallel model 
was also applied to HAGA. Moreover, outlines of PDDP and HAGA 
optimization techniques applied to ROO problems were presented 
(Fig. 1).
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Fig. 1. The flow diagram of ROO research.

312 Z. Zhang et al. / Computers & Industrial Engineering 65 (2013) 310–321
The remainder of this paper was organized as follows. Section 2
presented the formulation of the ROO problem. Section 3 explained 
the improved optimal algorithms. In Section 4, the application of
the proposed optimal algorithm was shown and the results were 
presented. Finally, in Section 5, the results of the study were dis- 
cussed and conclusions were provided .

2. Formulation of problems 

ROO is aimed at maximizing water resource benefits by deter- 
mining an optimal plan for a hydropower station over the opera- 
tion period, while satisfying all kinds of physical and operational 
constraints. Generally, the objective function and associated con- 
straints of the ROO problem can be formulated as follows.

2.1. Objective functions 

The major objective of ROO is to maximize the reservoir bene- 
fits, which are mainly related to hydropower generation and water 
supply. Hydropowe r generation is a significant benefit derived 
from a reservoir system, and it is related to a given operation of
the hydropower station for T intervals as follows:

F ¼max
XT

t¼1

AOtHtMt or F ¼ max
XT

t¼1

NtMt ð1Þ

where F is the total hydropower generation for all operation inter- 
vals, A is the comprehen sive output coefficient, Ot is the rate of out- 
flow from the reservoir in the tth operation interv al, Ht is the 
average reservoir storage level in the tth operation interval, T is
the number of intervals over the operating horizon, Mt is the period 
of the tth operation interv al, and Nt is the reservoir output in the tth
operation interval.

Recently, multi-objective ROO has become popular. This was 
developed as a technique to resolve conflicting objectives and it
converts the ROO into a multi-objecti ve problem. Besides hydro- 
power generation, other objectives are taken into account, such 
as flood control, navigation, benefits from supply of water to down- 
stream rivers, and the maximizatio n of water supply for civil or
agricultural uses. These objectives may be incompa tible with each 
other. In multi-objecti ve optimizati on, there is no simple optimal 
solution. Instead, the interaction of multiple objectives yields a
set of nondominant solutions, which belong to the objective func- 
tion space called optimal Pareto front (or Pareto set). The optimal 
Pareto set takes into account the existing relations among the dif- 
ferent criteria for optimality. Starting from a solution within the 
Pareto set, the fulfillment of an objective can only be improved 
at the cost of diminishing the fulfillment of at least one of the other 
objectives (Collette & Siarry, 2003 ).

Traditionall y, multi-objecti ve optimization problems have been 
solved using weighting methods or e-constraint methods. A single 
objective is obtained as the weighted sum of many objectives. The 
optimal Pareto set is obtained by varying the weights associated 
with each objective and solving the problem sequential ly. DeJong
(1985) used the weighting method to integrate multiple objectives 
into a single objective. In this approach, the need to compare 
incompa tible objectives significantly complicates the selection of
the weights. The e-constraint method retains one objective as the 
primary and treats the others as constraints, so all but one of the 
objectives is incorporated into the constraint set. The objectives in- 
cluded in the constraint set are varied parametrical ly from the low- 
er bound to the upper bound.

The main objective of this study was to maximize power gener- 
ation under certain constraints. To easily implement the algorithm 
for solving an ROO problem, we adopted an external penalty func- 
tion to convert a constrained optimization problem into an uncon- 
strained one. A reservoir operation system involves complicated 
procedures . For simplification, we considered only the two most 
vital objectives, which were flood prevention and power genera- 
tion (with irrigation, navigation, etc. ignored). Although reservoir 
operation should be cost-effective, it is important to ensure its reli- 
ability and safety. Generally, during the flood season, the reservoir 
operation maintains the storage at a fixed level (reservoir inflow is
equal to reservoir discharge). Hence, reliable output from the 
hydropower station and maximum power generation during the 
non-flood season were considered in this study. We designed the 
fitness function with penalty terms, which augment the objective 
function with penalty values associated with infeasible solutions:

f ðVÞ ¼ FðVÞ þM �minfN � Ninf ;0g ð2Þ

where f(V) is the fitness value, F(V) is the total hydropow er genera- 
tion for all operation intervals, M is a penalty weight, and Ninf is the 
minimum output.

2.2. Constrain ts

The reservoir operation problem is subjected to equality and 
inequalit y constraints.

A. The water volume balance equation is written as:

Vtþ1 ¼ Vt þ ðIt � OtÞ �Mt; t ¼ 1;2; . . . ; T ð3Þ

where Vt+1 is the reservoir storage volume in the tth operation inter- 
val, Vt is the reservoir storage volume in the tth operation interv al, It

is the inflow rate of the reservoir in the tth operation interval, Ot is
the outflow rate in the tth operation interv al, and Mt is the duration 
of the tth operation interval. The equation describes the water bal- 
ance under the assumption that there assum es no water loss from 
bed leakage.

B. The other constraints can be written as

ðV ; Z;O;NÞlt � ðV ; Z;O;NÞt � ðV ; Z;O;NÞ
u
t t ¼ 1;2; . . . ; T ð4Þ

where V, Z, O, and N are the reservoir storage level, storage volume,
dischar ge, and output capacity, respectively, while l and u are the 
lower and upper reservoir limits in the tth operation interval,
respective ly.

3. Methodologi es

3.1. Parallel determini stic dynamic programmin g algorithm 

3.1.1. Deterministic dynamic programming algorithm 
Different ial DDP can be used to solve the multistage optimiza- 

tion problem recursively. Dividing the reservoir operation into 
sub-operati ons on the basis of operation intervals, DDP yields an
optimal solution to the whole problem by using the solutions for 
the sub-operations . The ROO problem can be solved by the follow- 
ing DDP steps described below.
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3.1.1.1. Stage variables. Each stage is a dynamic problem that is fea- 
tured in real time. ROO problems can be divided into several 
stages. Generally, the problem is considered recursive from one 
stage to the next, leading to a final solution called recursive opti- 
mal solution. ROO involves a recursive procedure based on a DDP 
model including a multistage decision process. A decision must 
be made in each interval, being a month, 10 days, or five days,
which depends on the actual conditions of the ROO problem.

3.1.1.2. State variables. When making a decision at any stage, state 
variables are updated simultaneou sly. State variable discretizatio n
is necessary when using DDP models to solve ROO problems. The 
reservoir storage volume is an essential state variable and the dis- 
cretization has a pronounced effect on the computational efforts. In
this approach , the point-to-p oint transitions between storage vol- 
umes at the beginning and end of each period are replaced by
equivalent storage intervals. If the reservoir storage level is
adopted as a state variable, and make the equal storage level 
change, the storage volumes show larger variation s for high stor- 
age levels compared to low storage levels. Alternatively , we adopt 
the reservoir storage volume at the beginning of each period as a
state variable that can represent the evolution of the ROO, for con- 
formance with the requiremen t of no following effects. Smooth 
transitions between storage intervals are allowed as the storage 
volume interval is actually a continuo us variable, and the range 
of the state variables is from the storage volume at the normal 
storage level to the dead storage level.

3.1.1.3. Decision variables. The general form of an ROO problem is
such that every locally optimal solution should be calculated to ob- 
tain the global optimal solution. At each step, we make a decision 
only about the current best solution, and this decision might be
changed later on the basis of previous and current information 
available at that time. Therefore, the run-time of DDP is reduced;
the decision is only made locally as needed to traverse the list once.
As the reservoir storage volume is known at the beginning stage,
any discrete reservoir storage volume at the end of a stage prompts 
one decision, which can be written as

Oi ¼ qþ ðVbegin � Vend 
i Þt i ¼ 1;2; . . . ;n ð5Þ

where q indicates the reservoir inflow at the t stage, n is the number 
of state variable discretiza tions at the presen t stage, and Oi is the 
reservoir release correspondi ng to the ith decision; Vbegin and Vend 

i

are known as beginning reservoir storage volume and the end res- 
ervoir storage volume correspon ding to the ith decision .

The fitness of the present stage can be written as

Ft
i ¼ AOiHit i ¼ 1;2; . . . ; n ð6Þ

where Hi indicate s the reservoir storage level corresp onding to the 
ith decision at the present stage and Fi

i indicates the fitness of the 
ith decision at the present stage.

3.1.1.4. Recursive equation and its solution. The applicati on of DDP 
to the ROO problem involves a recursive procedure. In this study,
reverse recursion is adopted. The DDP method for obtaining the 
solution of the optimization problem is based on the fitness for- 
mula at a given time. Assume that t denotes discrete time steps,
where t = 0, 1, . . . , T; t would also represent the stage. At time 
interval t, the optimization problem over the remaining time de- 
pends on the state i and the decision variable Dt, which constitute 
a complete set of decisions. In general, the decision depends on the 
current state i. The fitness function is used to find the decision that 
maximizes the optimization problem. The t stage fitness function,
which represents a transition to state j during the next time inter- 
val, depends on i, j, and the current decision Dt, given that the 
optimal operation system is in the current state i. Thereafter, Dt

is replaced by the function Dt
i;j, and the recursive equation for the 

tth discrete point is

ft ¼max
Dt
fDt

i;j þ f i
t�1g j ¼ 1;2; . . . ;n ð7Þ

where ft is the optimal decision at the current stage (t) and f i
t�1 is the 

optimal decision at stage (t � 1).
In the reverse recursion procedure, starting from the last stage,

the fitness is calculated up to the first stage, and the line of optimal 
operation is obtained at last.
3.1.2. Parallel deterministic dynamic programmi ng
Parallel computing distributes sub-problem s to sub-units. Par- 

allelizati on is the process of analyzing sequential codes for paral- 
lelism and restructuring them to run efficiently on multi- 
processor systems by distributing the computati onal workload 
(sub-problems) among the processors. Every OpenMP program be- 
gins as a single process, the master thread, which executes sequen- 
tially until the first parallel region (parallel sections) construct is
encounter ed. In a parallel region construct, the master thread cre- 
ates a team of parallel threads. The workload is then enclosed by a
parallel region construct and executed in parallel among the vari- 
ous team threads. When the team threads complete the work by
computin g in the parallel region construct, they synchron ize and 
terminat e, leaving only the master thread. By running (forking)
multiple concurrent threads (processors) for parallel processing 
when a parallel region is encountered, the computations are com- 
bined into one thread for serial processing. This type of parallelism 
is called fork-join parallelis m (Fig. 2).

The fork/join framework (Lea, 2000 ) is designed for task that 
can be recursivel y broken into smaller pieces by using a work- 
stealing algorithm and is based on expressing parallelism by
means of two basic primitives: a fork, which starts the parallel exe- 
cution of a code fragment (commonly a procedure or a method),
and a join, which blocks the main application thread until the exe- 
cution of these code fragments is complete . PDDP algorithms solve 
problems by breaking them down into several sub-problems of the 
same type until trivial problems are obtained; these trivial prob- 
lems are solved directly. Like divide-an d-conquer algorithms,
PDDP algorithms are recursive; they repeatedly generate subtasks 
(forks) for each sub-problem , whose solutions are combined 
(joined) to obtain a solution of the original problem. Small sub- 
problems are commonly solved by calling a fragment of a sequen- 
tial code.

The operation of a reservoir system involves a complex deci- 
sion-mak ing process in which many variables and objectives are 
integrated , requiring a considerable amount of computati on and 
high efficiency. When DDP is applied to every stage of an ROO 
problem, there are many possible decisions that entail similar 
computati ons repeatedly. At every stage in Eqs. (5)–(7), there are 
n discretizatio n points for state variables with n2 groups between 
the beginning and end of storage levels. Hence, there are n2 possi-
ble decisions at each stage, and they are computed for the corre- 
sponding fitness values. If the beginning and end of storage 
levels in the operation period are fixed and known (flood control 
level), then for all T stages, there are 2n + n2(T � 2) possible deci- 
sions, which scale as O(k2T) for time. Before recursion, computing 
the fitness of each possible decision at each stage is not affected 
by any other possible decision at any stage and has no effect on
any other decision, which reflects a characteristic of parallelism.
In PDDP, all possible decisions are initially distributed evenly 
across the p processors. Each processor is assigned 
[2k + k2(T � 2)]/p particles, and the processors are responsib le for 
computin g the fitness only for possible decisions, which scale as
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O((k2T/p) + p) for time. Therefore, more tasks can be completed 
within the same time.

3.2. Hierarchical adaptive genetic algorithm 

3.2.1. HAGA formulation 
In this approach, we aim to achieve a trade-off between explo- 

ration and exploitation by varying pc and pm adaptively in response 
to the fitness values of the solutions and by using the hierarchical 
structure. The HAGA uses an archive based on hierarchy to improve 
the optimization capability and convergence property of the AGA 
for solving the ROO problem.

The HAGA designed for solving the ROO problem is based on a
reservoir objective function, which is described in Section 2.1. The 
constraints in the ROO problem are discussed in Section 2.2, and 
the procedures in the HAGA are listed below.

A. First Hierarch y: This uses the breadth mutation model to
generate the next generation.

Step 1: Set related parameters, including the population size 
and gene length.

Step 2: Generate the initial population randomly as follows:

Vt ¼ Vl
t þ r � ðVu

t � Vl
tÞ ð8Þ

where r 2 ½0;1� is a rando m number. By this method, feasible solu- 
tions are generated in the form 
ðV1

1;V
1
2; . . . ;V1

nÞ; ðV
2
1;V

2
2; . . . ;V2

nÞ; . . . ; ðVpopsize
1 ;Vpopsize

2 ; . . . ;Vpopsize 
n Þ,

where popsize is the populat ion size and n is the chromosom e
length corresp onding to the operation period.

Step 3: Calculate the fitness value by using Eq. (2) and select the 
elite for the second hierarchy. We use the breadth mutation model 
to reduce the probability of generating an infeasible solution. By
using the random operator, the next generation is generated near- 
by the best individual, and this can be expressed as follows:

ðVi
1; . . . ;V

i
nÞ¼ðV

best
1 ; . . . ;Vbest 

n Þ�r�ððVbest
1 ; . . . ;Vbest 

n Þ�ðV
l
1; . . . ;V

l
nÞÞ i6popsize=2

ðVi
1; . . . ;V

i
nÞ¼ðV

best
1 ; . . . ;Vbest 

n Þþr�ððVu
1; . . . ;V

u
nÞ�ðV

best
1 ; . . . ;Vbest 

n ÞÞ i>popsize=2

(

ð9Þ

where Vi denotes an individua l of the next generation and Vbest de-
notes the elite individua l correspondi ng to the best solution found 
so far.
A. Second Hierarchy: This initializes the individuals of the pop- 
ulation by using the archive of the first hierarchy. The other 
procedures are the same as those of the improved AGA.

Step 1: Set the number of generations kmax.
Step 2: Calculate the fitness value by using Eq. (2) for the pop- 

ulation from the first hierarchy and select individuals for the next 
generation. On the basis of the individual fitness and selection 
operator , use elite roulette selection (Song, 2009 ) to determine 
which individual in the parent population should be selected for 
the next generation. On the basis of the random number, the prob- 
ability of each individual being selected is determined, and by
using the elite principle, the best individua l in the last generation 
is directly admitted to the next generation. Each evolution gener- 
ates the best individual for the next generation.

Step 3: Adopt the adaptive crossove r and mutation operators to
generate the next generation. In the course of crossove r and muta- 
tion, the probabilitie s of crossove r and mutation for a selected indi- 
vidual are adjusted accordin g to the following formulas:

Pc ¼
Pc1 � ðPc1 � Pc2Þðf 0 � favgÞ=ðfmax � favgÞ f 0 P favg

Pc1 f 0 < favg

�
ð10Þ

Pm ¼
Pm1 � ðPm1 � Pm2Þðf 0 � favgÞ=ðfmax � favgÞ f 0 P favg

Pm2 f 0 < favg

�
ð11Þ

where Pc1; Pc2; Pm1; and Pm2 represent adaptive coefficients, favg rep-
resents the averag e fitness value, and f0 represents the fitness of the 
selected individua l, which is the higher of the fitness values of the 
two individua ls selected in crossover and the individua l selected 
in mutation. By above-m entioned operator, we can produce off- 
spring for the next generation. An elite-preser ving approach is
adopted , and the choice of offspring is made by comparing them 
with the best solution s found so far. The best solution is preserved 
for the next generation.

There are some conditions under which the HAGA reverts to the 
breadth mutation model. To prevent the AGA from becoming 
trapped by a local optimum, the model guides the AGA to avoid 
the local optimum and obtain the global optimum to some extent.
The HAGA can use the breadth mutation model if the fitness value 
meets the following condition:

Absðf i
best � f i�1

bestÞ 6 e ð12Þ

where f i
best is the fitness value of the elite individua l in the ith gen- 

eration , f i�1
best is the fitness value of the elite individual in the (i � 1)th

generati on, and e is the contro l region. Accordingl y, we can consider 
the AGA falling into a local optimum if the fitness value of the elite 
individua l barely chang es between two generations .

Step 4: If the maximum number of iterations kmax is reached for 
the HAGA, the procedure will proceed to the next iteration from 
Step 2. Otherwise, the elite will be taken as the new solution and 
the AGA procedure will be terminated. A sketch of the hierarchy 
is shown in Fig. 3.

4. Case study 

4.1. Descriptio n of the Three Gorges Project (TGP)

Located in the middle of the Xiling Gorges, the Three Gorges 
Project (TGP) is one of the major water conservancy projects in
China. The Yangtze River has a drainage area of 1.8 million square 
kilometer s and includes agricultural and industrial terrain. It is the 
third largest river in the world and the largest river in China in
terms of channel length and water flow. As the river flows east 
through the mountains, it encounter s a narrow constriction at
the Three Gorges of Qutang, Wu, and Xiling (or Sanxia) (Fig. 4).
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With two hydropower gravity dams, the TGP is built 40 km up- 
stream from the Gezhouba dam, and it has a height of 175 m and a
length of 2335 m. The spillway dam, located in the middle of the 
river’s course, is 483 m long with 23 bottom outlets and 22 surface 
sluice gates. Salient features of the TGP are presented in Table 1.

The operation of the TGP reservoir is managed in a way that 
comprehens ively meets the requirements of flood control, power 
generation, river navigation, and sediment discharge. From the 
end of May to the beginning of June, the reservoir storage level is
maintained at 145 m, and during the flood season from June to
September, the reservoir is generally operated at a lower storage 
level. (For operation in the early stage, the reservoir storage level 
is 156 m and the flood control level is 135 m.) Flow exceeding 
the discharge capacity of the power station is released. The reser- 
voir is used to retain floodwater if the reservoir inflow surpasses 
the safe discharge in the downstre am reaches. However, the reser- 
voir storage level is still lowered to 145 m after the flood peak has 
passed. In October, the reservoir storage level rises gradually to
175 m. From November to the end of April of the following year,
the storage level of the reservoir is kept as high as possible to allow 
the peak load of the electrical grid to regulate the operation of the 
power station. Then, the reservoir storage level is lowered, but it
should not fall below 155 m before the end of April in order to en- 
sure adequate navigational conditions. January to April is the wet 
season and the storage level decrease s gradually , resulting in a
low flow rate for the TGP. Only through ROO may the TGP satisfy 
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Fig. 3. The flow diagram o
the multiple purposes of water supply, including irrigation, hydro- 
power generation, industrial and domestic uses, flood control, and 
recreatio n.

The Yichang station is nearby the Three Gorges dam, and the 
station runoff varies: it is over 79% between May and October 
(flood season) and less than 7.5% between January and March.
There is less runoff during the non-flood period of a low-flow year,
and therefore, water resource utilization can be enhanced through 
optimal operation decisions. Many researche rs have focused on the 
non-flood period, for which ROO can be useful owing to diminished 
water resources. An optimal algorithm can be used for the ROO 
problem in this case.

4.2. Results and discussion 

During the flood season from June to September, the Three 
Gorges reservoir storage level is kept at the flood control level of
145 m, so the optimal operation period is from September 1 to June 
10 of the following year. There are 28 time intervals (considering a
period of ten days as one operation interval). Only for dry year is
the ROO useful for applicati on to water resource utilizations, which 
emphasizes the importance of reasonable allocation of water re- 
sources. For example, 1972 was a dry year with a reliability of
95% based on TGP inflow data for 121 years from 1882 to 2002,
where the reliability is obtained after the statistical analysis of
121 yearly inflow data in each year.
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Fig. 4. The location of the Three Gorges Project, China.

Table 1
The salient features of TGP.

Items Value Units 

Total capacity 39.3 billion m3

Area 1084 km2

Machine units 26 s sets 
Installed capacity 1.82 � 104 MW
Mean depth 70 m
Maximum depth 170 m
Average width 1100 m
Flood control storage level 145 m
Maximum storage level 175 m
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4.2.1. Results of PDDP 
The data available for an optimal algorithm analysis include res- 

ervoir properties, rule curves, inflow over ten-day intervals, and 
expected water demand.

For PDDP, we used a CPU with four processors and a clock speed 
of 2.40 GHz. All programs were implemented in FORTRAN using 
the OpenMP interface. With the parameter settings listed in Ta-
ble 2, the proposed PDDP was impleme nted to solve ROO problems 
for the period from September 1 to June 10 of the following year.

For the OpenMP impleme ntation, an input file allows the user 
to input the desired number of threads. On the basis of this num- 
ber, the ROO problem is solved statically or dynamically among the 
threads by using the OpenMP library command s. We considered 2,
4, 8, and 16 threads.

We tested different numbers of threads on the quad-core multi- 
processor system. Fig. 5 showed the OpenMP parallel computation 
time versus the number of threads for the PDDP algorithm dis- 
cussed in Section 3.1. The performanc e of the DDP, with and with- 
out the OpenMP parallelization , was presented in Table 3.

Using parallel computati on could obviously speed up the DDP 
algorithm. Serial computation in DDP was considered as a single 
thread, so setting 2, 4, 8, and 16 threads for DDP can decrease 
the computati on time, as shown in Table 3. It was notable that 
(a) the computati on time was much less for the parallel computa- 
tion than for the sequential computati on and (b) the CPU utiliza- 
tion was much greater for the parallel computation than for the 
sequential computation. The better performanc e of the OpenMP 
parallel computati on was attributed to its memory localization,
which facilitates faster data access and less communicati on con- 
tention among processor s. The CPU usage for the parallel computa- 
tion was 100%, which implied a full workload and full use of the 
computati onal resource . In the OpenMP parallel computation, the 
PDDP used all threads of the quad-core computer (default: four 
threads). The serial computation was only 25% resident in the 
CPU, which implied significant wastage of the parallel resource.

The following two results indicated that the OpenMP parallel 
performanc e was notable: (1) multi-thread s produced a good 
speedup compared to single threads and (2) while the performanc e
increased with an increase in the number of threads from 4 to 16,
the performanc e did not improve further upon the addition of
more threads. The computer had a CPU with four processors. When 
8 or 16 threads were set for PDDP, there were some sub-tasks in a
queue since the number of threads exceeded the number of proces- 
sors. Hence, 8 or 16 threads made the PDDP more complicated than 
four threads for such a computer. The best parallel performance 
was obtained with four threads, for which the data access was 
much faster and there was less communication contentio n among 
processor s.

4.2.2. Results of HAGA 
The HAGA methods were also implemented through FORTRAN 

programm ing, solving the ROO problems mentioned above. The 
mutation parameter and crossove r parameter are generally key 
factors that considerably affect the performance of algorithms 
(Lu & Zhou 2010 ). Suitable values of these two parameters were 
estimate d by using Eqs. (10) and (11) for implementing HAGA.
The Correspond ing parameters used for adaptive mutation and 
crossove r were listed in Table 4. In order to verify the effectiveness 
of the algorithm presente d in this paper, two other algorithms 
were implemented to solve the same problem: algorithm 1 was 
the simple AGA and algorithm 2 was the AGA with the breadth 
mutation model in Eq. (12).

The proposed HAGA was impleme nted for kmax = 200 with two 
hierarchies , each hierarchy correspond ing to 100 iterations.
Preserving population diversity was crucial for a successful and 



Table 2
The parameter s of the PDDP.

Parameter of the PDDP Setting value 

The number of stage 28
The number of discretization points at every state 

(decision variables)
500 

The number of thread 2, 4(default) and 
8, 16

Fig. 5. PDDP algorithm performance with different threads.

Table 3
The computa tional performance of DDP and PDDP.

Parameters No. Serial (Thread = 1) Parallel (threads)

2 4 8 16

Compute time/s 1 27.79 15.09 7.98 8.96 8.45 
2 27.79 15.09 7.98 8.78 9.06 
3 27.79 15.09 7.98 9.06 8.54 

Average time/s 1 27.79 15.09 7.98 8.93 8.68 
CPU usage/% 1 25 50 100 100 100 

Table 4
Parameters of three meth ods.

Method Popsize kmax e pc1 pc2 pm1 pm2

Algorithm 1 100 100 0.1 0.9 0.6 0.1 0.001 
Algorithm 2 100 100 0.1 0.9 0.6 0.1 0.001 
HAGA 100 200 0.1 0.9 0.6 0.1 0.001 

Fig. 6. The elite individual of first hierarchy.

Table 5
Comparison of the result obtained from different methods.

Method Maximum hydropower (billion Kw h) (bkW)

PDDP 48.77 
Algorithm 1 48.419 
Algorithm 2 49.379 
HAGA 49.634 
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efficient search in the case of an ROO problem. The proposed HAGA 
improved population diversity by using the archive from the first
hierarchy, and the elite chromosom e of every generation was cho- 
sen as the initial individual for the second hierarchy, as shown in
Fig. 6. It was clearly seen that the fitness function value was evenly 
distributed based on breadth mutation model, providing a better 
diversity of initial population by the strategy of archive.

A comparison of the operation results and convergence perfor- 
mances of the proposed HAGA methods was performed. Table 5
listed the best solutions of those methods, and the correspondi ng
convergence property comparisons were shown in Fig. 7.

Table 5 clearly showed that the proposed HAGA could provide a
better operation result with the maximum hydropower. Moreover,
it can be seen clearly that the proposed HAGA methods could ob- 
tain better operation results than algorithm 1, algorithm 2, and 
PDDP, and the course of operation was shown in Table 6. The best 
hydropower generation over the operation horizon obtained by the 
hierarchy methods for the operation period in the ROO problems 
was 49.634 bkW. Fig. 7 provided details of the power generation 
for the best operation results obtained by the proposed HAGA 
and the other two methods.
It was evident that algorithm 2 and the HAGA can achieve bet- 
ter power generation than algorithm 1 for the ROO problems . Algo- 
rithm 1 might be prematu re, finding a local optimum easily. In
contrast, algorithm 2 and the HAGA were enhanced with the 
breadth mutation model, which prevented them from being 
trapped by a local optimum, provided that certain conditions were 
met between two generations . In particular, the HAGA can obtain 
better solutions than the other two algorithms. The proposed 
HAGA has computed the adaptively and converges to obtain the 
maximum value at the end of the procedure. At the beginning of
the procedure, the HAGA used the archive from the first hierarchy 
as the initial population and evolution started from the second 
hierarchy. The archive from the first hierarchy led to a high objec- 
tive value but a low fitness, indicating that there were some infea- 
sible solutions with large penalty values. With evolution, the 
infeasible individuals could be eliminated by increasing the value 
of penalty items of the above-mention ed constrain t handling 
methods . The HAGA found the best solutions after eliminating 
the infeasible individuals at the end of the procedure, and it satis- 
fied all the constraints of the ROO problem while increasing the 
power effectively. Thus, the HAGA was robust for solving the 
ROO problem.
4.2.3. Comparisons between HAGA and PDDP and discussions 
To further define the operation strategy for the ROO problem,

the HAGA and PDDP were implemented for the same case and a
comparis on was made between them to test the optimal result 
of the proposed algorithm. Table 7 listed the solutions obtained 
for the ROO problem by using the following algorithms: two opti- 
mal algorithms (using different optimal mechanism s), PDDP (using
a recursive strategy with a parallel model), and the HAGA (adopt-
ing a heuristic mechanism as the evolution strategy).

The operation results obtained by the PDDP methods could sat- 
isfy the reservoir output constrain ts, basically meeting the firm
output demand. However, the operation results obtained by the 
HAGA method could not satisfy the firm output constrain ts but 
only the minimum output demand. For some operation intervals,
the output was lower than the firm output because of the random 
mechanis m of the evolution algorithm.

It can be seen that the HAGA results in more power generation 
compare d to the PDDP method. Although some operation intervals 
had low yields, the HAGA had an optimal effectivenes s for the ROO 



Fig. 7. Power generation comparison of the three methods.
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problem. Fig. 8 gave details of the operating procedure, including 
the storage level and output at every stage.

Fig. 8 clearly showed that the two algorithms differ with respect 
to variations in the storage level and output with the operation 
stage. The PDDP method gave significant changes in the storage le- 
vel and meets the firm output, while the HAGA results in moderate 
changes in the storage level and did not meet the firm output at
some stages. Because the GA is stochastic, its minimum output 
was below the firm power and thus could not meet the power gen- 
eration demand; however, it still had an advantage over PDDP with 
regard to power generation.

The net available head (Ht) in formula (1) was created in follow- 
ing way, being the most known type: building a dam in order to in- 
crease the storage water level just above the plant. Accordingly, Ht

could be formulated as following:

Ht ¼ Ht�up � Ht�down ð13Þ

where Ht-up is the reservoir storage water level at the interval t; and 
Ht-down represents tail water level, which can be considered as a
constant elevation for TGP over the whole operation period. So
the TGP storage level was the key factor associated with Ht in an
Table 6
The optimization of three algorithms.

t It Storage level (m) Outflow (m3/s)

GA1 GA2 HAGA GA1 GA2 

1 14,560 148.5 150.6 148.9 12,512 11,212 
2 19,180 156.8 160.6 161.5 13,282 11,481 
3 18,200 161.5 163.6 163.4 14,378 15,655 
4 13,970 164.4 165.8 165.1 11,410 11,823 
5 15,020 168.5 170.5 170.4 10,999 10,273 
6 11,628 171.0 172.0 174.3 9144 10,001 
7 8681 170.3 174.6 174.2 9424 5711 
8 11,300 170.3 173.6 174.3 11,298 12,522 
9 6926 171.8 174.3 174.4 5239 6120 

10 5133 170.8 174.9 174.7 6235 4427 
11 4462 171.0 174.8 174.7 4298 4561 
12 3916 171.8 174.5 174.7 3110 4196 
13 3778 170.5 174.1 174.0 5198 4302 
14 3500 168.4 172.6 174.0 5798 5151 
15 3653 169.0 171.5 172.3 3077 4843 
16 3509 169.1 171.1 171.2 3330 3945 
17 3558 167.8 169.4 170.5 4900 5457 
18 3772 167.1 169.9 169.8 4734 3076 
19 3272 164.6 168.9 168.0 5659 4273 
20 3585 164.1 166.8 166.4 4049 5745 
21 3231 160.9 165.2 164.5 5790 4625 
22 5752 159.7 163.2 164.5 6777 7627 
23 7709 161.4 161.6 163.5 6324 9121 
24 7440 158.0 160.5 161.4 10,214 8391 
25 10,594 156.8 159.6 159.9 11,482 11,333 
26 15,320 156.1 152.8 158.1 15,931 20,632 
27 11,561 154.5 154.6 154.1 12,673 10,284 
28 14,350 145.0 145.0 145.0 20,495 20,629 

Total 
operation period. The TGP has the functions of flood control. In or- 
der to guarantee flood control requireme nts, flood-control limiting 
level of 145 m shall be general ly guaranteed during the period from 
the first ten days of June to the end of August. So the reservoir stor- 
age level was kept to 145 m at both begin and end of the operation 
period under aforem entioned principle indicatin g:

VTþ1 ¼ V1 ð14Þ

Based on formula (3)

XT

t¼1

Vtþ1 ¼
XT

t¼1

Vt þ
XT

t¼1

ðIt � OtÞMt ð15Þ

The total water volume of inflow
PT

t¼1ItMt ¼
PT

t¼1OtMt , which is the 
total volume of water discharged as the result of hydrop ower gen- 
eration over the whole operation period. The total water volume of
inflow is determinist ic in one year, so

PT
t¼1OtMt is a fixed value over 

one operation period; Ht is the key factor playing important role in
power generat ion F over the whole operation period. Seen from Ta-
ble 7, the average water level of HAGA (166.8 m) was higher than 
that of PDDP (163.3 m). HAGA got accordingl y more hydropow er
generati on than PDDP shown in Table 5.

In an operation period, when natural inflow was abundan t and 
power output was large and steady, the hydropower plant could 
provide firm output for electric power system. However, during 
low-flow operation interval, due to different operate strategy 
adopted by two improved algorithm, the PDDP could satisfy the 
electric power system demand. For HAGA, there were some time 
intervals, when the power output was lower than firm output 
but satisfying the minimum output demand. Therefore, the PDDP 
could provide more steady power output for electric power system 
than the HAGA. When natural inflow was less than conveying firm
output to meet electric power system requirements, the strategy of
optimizati on algorithms was increasing discharge from the gener- 
ating sets by regulating reservoir pondage, and resulted in
Output (MW) Power (bkW)

HAGA GA1 GA2 HAGA GA1 GA2 HAGA 

12,271 8927 8123 8781 2.142 1.949 2.107 
9674 10,171 9100 7669 2.441 2.184 1.84 

16,552 11,771 13,185 13,965 2.825 3.164 3.351 
12,347 9744 10,271 10,673 2.338 2.465 2.561 

9644 9729 9251 8661 2.335 2.22 2.078 
7574 8361 9270 7106 2.207 2.447 1.876 
8777 8689 5412 8372 2.085 1.299 2.009 

11,202 10,365 11,880 10,661 2.487 2.851 2.558 
6862 4864 5828 6558 1.167 1.398 1.574 
4808 5799 4245 4608 1.391 1.018 1.106 
4316 3986 4384 4145 0.956 1.052 0.994 
3952 2897 4027 3797 0.764 1.063 1.002 
4675 4829 4115 4475 1.159 0.987 1.074 
3454 5300 4884 3296 1.272 1.172 0.791 
5410 2795 4539 5121 0.738 1.198 1.351 
4773 3036 3672 4462 0.728 0.881 1.07 
4374 4441 5026 4054 1.066 1.206 0.973 
4658 4250 2818 4290 0.816 0.541 0.823 
5207 4999 3907 4738 1.199 0.937 1.137 
5159 3528 5175 4619 0.846 1.242 1.108 
4895 4949 4095 4311 1.306 1.081 1.138 
5715 5659 6622 4983 1.358 1.589 1.196 
8713 5294 7768 7541 1.27 1.864 1.81 
9230 8450 7052 7863 2.028 1.692 1.887 

11,888 9258 9397 9915 2.221 2.255 2.379 
16,728 12,631 16,173 13,615 3.031 3.881 3.267 
14,387 9967 7976 11,403 2.631 2.105 3.01 
20,257 14,998 15,111 14,799 3.599 3.626 3.551 

48.42 49.38 49.63 



Table 7
The optimization of ROO.

Stage Inflow Storage level (m) Outflow (m3/s) Output (MW) Power (bkW)

PDDP HAGA PDDP HAGA PDDP HAGA PDDP HAGA 

1 14,560 150.0 148.9 11,620 12,271 8378 8781 2.01 2.107 
2 19,180 162.0 161.5 9950 9674 7943 7669 1.906 1.84 
3 18,200 162.0 163.4 18,200 16,552 15,228 13,965 3.654 3.351 
4 13,970 161.9 165.2 14,044 12,347 11,830 10,673 2.839 2.561 
5 15,020 171.4 170.4 5617 9644 5013 8661 1.203 2.078 
6 11,628 175.0 174.3 7865 7574 7431 7106 1.961 1.876 
7 8681 175.0 174.3 8681 8777 8331 8372 1.999 2.009 
8 11,300 175.0 174.3 11,300 11,202 10,818 10,661 2.596 2.558 
9 6926 175.0 174.4 6926 6862 6655 6558 1.597 1.574 

10 5133 174.9 174.7 5197 4808 4998 4608 1.199 1.106 
11 4462 174.3 174.7 5232 4316 5015 4145 1.203 0.994 
12 3916 173.0 174.8 5258 3952 4996 3797 1.319 1.002 
13 3778 171.6 174.0 5318 4675 4993 4475 1.198 1.074 
14 3500 169.9 174.1 5393 3454 4992 3296 1.198 0.791 
15 3653 168.0 172.4 5491 5410 4997 5121 1.319 1.351 
16 3509 165.9 171.2 5594 4773 4994 4462 1.198 1.07 
17 3558 163.6 170.5 5739 4374 5015 4054 1.203 0.973 
18 3772 161.7 169.8 5858 4658 5011 4290 0.962 0.823 
19 3272 158.4 168.0 5999 5207 4999 4738 1.199 1.137 
20 3585 155.0 166.5 6216 5159 5000 4619 1.2 1.108 
21 3231 150.1 164.5 6498 4895 4998 4311 1.319 1.138 
22 5752 148.4 164.6 6746 5715 4989 4983 1.197 1.196 
23 7709 149.9 163.5 6778 8713 5010 7541 1.202 1.81 
24 7440 151.1 161.5 6669 9230 5008 7863 1.202 1.887 
25 10,594 156.7 159.9 6422 11,888 5013 9915 1.203 2.379 
26 15,320 167.5 158.2 5854 16,728 4999 13,615 1.199 3.267 
27 11,561 159.2 154.2 18,387 14,387 15,628 11,403 4.125 3.01 
28 14,350 145.0 145.0 24,168 20,257 18,098 14,799 4.343 3.551 

Average 163.3 166.8 Total 48.77 49.634 

Fig. 8. The operation results of storage level and output.
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decreasing operation water level of TGP. In order to meet firm
power output, the operation storage level of PDDP was changing 
more largely than that of HAGA after 13th time interval as shown 
in Fig. 8. Although the operation result of HAGA showed that the 
power output did not meet electric power system, more generation 
benefit was obtained than that of PDDP over all operate intervals.
In a word, increasing discharge from the reservoir lead to depress 
the storage water level. Total power generation from all operation 
intervals obtained from PDDP decrease d based on formula (13),
(14) and (15). Otherwise, the storage water level of HAGA would 
not decrease quickly failing to meet firm output demand and elec- 
tric power system requirements, obtaining more power generation 
benefit.

Moreover, during low-flow interval, a combination operation of
hydropower and thermal power station was adopted to meet elec- 
tric power system demand; the hydropower station generally 
served for peak shaving, frequency modulation and emergency re- 
serve, etc. in electric power system, so as to give full play of
advantag es of hydropower plant. The large fluctuation water level 
of PDDP did not comply with the principle of navigation. In revi- 
sion, operation code provided by (The Ministry of Communi ca- 
tions, 2005 ) has been incorporate d into operation and regulation 
rules of TGP requiring that daily fluctuation amplitud e of water le- 
vel shall not exceed 3.0 m. So the HAGA was more suitable for 
some kind situation of ROO problem. Moreover, parallel OpenMp 
model can be applied to HAGA by distributing computati onal 
workload. The best parallel performanc e was obtained with four 
threads, so setting four threads (as shown in Fig. 5) for HAGA,
the computational performanc e as shown in Table 8. From Table 8,
it was clearly seen that (a) the HAGA with parallel can decrease the 
computati onal time compare to HAGA without parallel. (b) HAGA 
with parallel can solve the ROO problem more efficiently than 
PDDP. Thus, the successfu l application of HAGA with parallel for 
solving ROO problem was well demonstrated.

Thus, the PDDP was a little more reliable for electric power sys- 
tem but less generation benefit than HAGA. So the HAGA was more 



Table 8
The computationa l performance of ROO.

Index PDDP/s HAHA/s HAGA with parallel/s 

1 7.98 1.78 1.03 
2 7.98 1.79 1.03 
3 7.98 1.85 1.02 
Average time/s 7.98 1.81 1.03 
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economical. This showed that two important objectives in the ROO 
problem, economy and reliability, were contradictory for decision 
makers who want safety in the flood season, although there are 
more choices in the non-flood season. The simulate results ob- 
tained from two proposed methods revealed the characteri stics 
of the ROO problem. Better power generation benefit was shown 
in Table 5 and better computational performance was shown in Ta-
ble 8. Using HAGA was more suitable for some kind situation of
ROO problem than PDDP. Moreover, the results presented herein 
demonstrat ed that HAGA optimizati on uncovered new ways to fur- 
ther improve the robustness and efficiency of evolutionary search 
for the ROO problem.

The two methods mentioned above gave different results to
decision makers, but more decisions can be provided by a Pareto 
set. For designers making choices according to different require- 
ments, there was also a multi-objecti ve optimizati on problem with 
regard to the TGP. With a multi-objecti ve optimizati on problem,
there were many Pareto optimal solutions that form a so-called 
Pareto optimal front (Srinivas & Deb, 1995 ). In the absence of
any additional informat ion, none of these Pareto optimal solutions 
can be determined to be better than any other solution. This com- 
pels a user to find as many Pareto optimal solutions as possible. To
solve a multi-objecti ve problem, decision makers should find the 
optimal Pareto set. The solution preferred by the decision maker 
always reflects a compromise between the different objectives.
The consideration of the existing relations among the different 
objectives allows the decision maker more flexibility in the selec- 
tion of a suitable alternative solution. Moreove r, a Pareto front 
facilitates the desegregati on of decisions for a decision maker,
and it can help in achieving optimal trade-offs for the ROO 
problem.
5. Conclusions 

The ROO problem consists of many conflicting objectives that 
must be optimized simultaneously under a series of equality and 
inequality constraints. The problem is difficult to solve efficiently
not only because of its large scale but also because it is a multi- 
objective, dynamic, nonlinear , and constrained problem. A set in
objective function space was identified using e-constraint methods ,
and two objectives of the ROO problem were comprehensive ly
optimized using a set of penalty items, to convert the original prob- 
lem into a single-objective problem. PDDP and the HAGA were 
used to solve this problem.

The PDDP method could be applied to the ROO problem, which 
can then be parallelized to improve the computational efficiency.
The proposed algorithm used multi-threadin g through OpenMP 
showing good performanc e for up to four threads on a quad-core 
computer system. The HAGA was proposed to avoid premature 
convergence through the use of an elitist archive and to obtain a
solution of the ROO problem. Compare d to PDDP and two other 
methods, this gave the best result for the TGP. The results showed 
that the HAGA in conjunction with a hierarchical strategy, the use 
of the breadth mutation model, showed the best performanc e in
terms of converge nce and final solution. Moreove r, parallel model 
was integrated into the proposed HAGA to improve the computa- 
tional efficiency of algorithm, and could provide better power 
generation benefit result in a shorter computational time for solv- 
ing the ROO problem than PDDP. Although the output values of
TGP obtained from HAGA for some time intervals were a little less 
than those of PDDP, which could not meet electric power system 
demand, the hydropower plants could be operated combined with 
thermal power station, and then provided enough power genera- 
tion. Moreove r, during low-flow season, in order to give full play 
of advantages of hydropower plants, the hydropower stations 
could serve for peak shaving, frequency modulation and emer- 
gency reserve, etc. in electric power system. The results proved 
the superiority of the proposed HAGA with parallel method regard- 
ing the convergence properties, power generation benefit, and 
computati onal efficiency.

Furthermor e, two contradictor y objectives , economy and reli- 
ability, were reconciled by comparing the results of the HAGA 
and PDDP. To secure an optimal trade-off solution to the ROO prob- 
lem, our study on solving a multi-objecti ve problem will continue 
in the future to find the optimal Pareto set that can help a decision 
maker choose a good solution. Thus, decision makers will be able 
to make choices accordin g to requiremen ts.
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