
 

 

 

 
  

Abstract—Water resources planning is very important for 
water resource management and electric energy production. 
The problem is challenging in view of the stochastic system 
dynamics, nonlinear rewards, coupled hydraulic constraints, 
and large problem size. Existing methods based on 
discretization are facing the dilemma of solution accuracy and 
computational efforts. This paper formulates the dynamic water 
resources planning problem with locational release and annual 
consumption constraints as a finite-horizon Markov decision 
process (MDP) with continuous variables, and develops a 
sensitivity-based approach to optimize the policies. Numerical 
results based on a practical system on Yellow River in north 
China demonstrate the effectiveness of the formulation and the 
efficiency of the new algorithm. 

I. INTRODUCTION 
ATER resources planning is very important for water 
resource management and electric energy production. 

The planning goal discussed in this paper is to maximize the 
total reward from hydro generation by determining the 
discharge and spillage to downstream and the water 
consumption for irrigation and urban supply of all reservoirs 
in each stage, subject to various operating and hydraulic 
coupling constraints, and government regulations for daily 
life, agricultural and ecological requirements. Typically, the 
planning horizon is one year, and the decision stage is one 
week or two weeks. This planning problem has huge 
economical and environmental impact with the potential to 
improve the water resources allocation and to alleviate the 
negative ecological effect. 

The dynamic water resources planning has been an active 
research area over the past decades due to its significant 
economic impact [1][8][12][27][30]. Markov Decision 
Process (MDP) [13]-[15] is widely used to formulate the 
dynamic water resources planning due to its ability to cope 
with nonlinear and stochastic characteristics of such problems 
[2][8]. However, it faces the well known challenge of huge 
decision or policy space, often referred to as “curse of 
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dimensionality” as surveyed in [8]. Various methods were 
developed to deal with this challenge. Approximation for 
value functions, such as piecewise linear function or neural 
network, are investigated in [7] and [8]. Approximation in 
policy space, such as various operation rules and heuristics, 
are studied in [5] and [6]. Problem approximations, like 
aggregation and decomposition of reservoirs, are considered 
in [9]-[11]. In our previous work, the water resources 
planning problem is formulated as a constrained Markov 
decision problem and a “rollout” based approximate dynamic 
programming method is developed to solve the problem with 
quantified approximation [28]. The major issue of the 
existing methods is that discretization in decision space is 
generally needed and we have to deal with the dilemma of 
approximation precision and computational efforts.  

This paper studies a water resource planning problem with 
cascaded reservoirs located in Yellow River, the second 
largest river in China. The problem considered in the paper 
has the following features: 
1) the locational release constraints which designate a lower 

bound of water release for each reservoir, are considered 
to prevent water cutout in the peak demand seasons;  

2) the annual consumption constraint, which designate an 
upperbound of water consumption of the province in one 
year, is considered to rationalize the usage of limited 
water resources among different provinces;  

3) the seasonal water demands for the irrigation and urban 
supplies are considered to guarantee the basic water 
consumption;  

4) the water recession, i.e., portion of water consumption 
becomes a part of inflows to downstream reservoirs is 
considered. 

This dynamic water resource planning problem with the 
above considerations and uncertainties in natural inflows is 
generally very difficult. For many methods that can only 
handle discrete decision variables, trade-offs must be 
considered between computational accuracy and efficiency. 
The framework of Markov Decision Process (MDP) with 
continuous states and actions is introduced in this paper to 
capture the uncertainties, and complicated constraints and 
regulations without discretizing the resource volumes. Based 
on the conceptual framework of perturbation analysis 
[16][21], a new algorithm is developed to solve the MDP 
problem with continuous variables and finite-horizon. The 
new algorithm does not rely on the ergodic and stationary 
assumptions and can deal with both continuous and discrete 
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variables, since the performance derivative is derived for the 
finite-horizon total-cost MDPs with continuous state and 
action variables. There is no need to determine the difficult 
trade-off between computational accuracy and efficiency. 
Numerical results illustrate that the MDP formulation is 
effective and the new sensitivity-based algorithm is efficient 
to solve the water resources planning problem with locational 
release and annual consumption constraints considered in this 
paper. 

II. PROBLEM FORMULATION 
Assume a watershed with I hydro plants in one province 

and each hydro plant has its own fore-bay reservoir. It is 
required to determine the water discharge, spillage, and water 
consumption of all reservoirs over a specified horizon T 
subject to the operating constraints of individual reservoirs 
and hydraulic coupling. The goal is to maximize the total 
hydro generation reward. The decision stage is for one or two 
weeks and the planning horizon is usually one year.  

The following assumptions are made to simplify the 
discussions without losing generality. 
1) The water flow time delay between reservoirs is no more 

than a decision stage in the long-term planning problem;  
2) The water released from a reservoir directly enters only 

one reservoir. 
3) The reservoir network is acyclic.   
In fact, these assumptions are typically made in the literature 
[8] and the assumption 2) and 3) can be removed by adding 
more variables in the model.  

The system states, actions, and dynamics are modeled as 
follows. For any t = 0, 1, …, T-1, the state X(t) at stage t 
involves the storage ( )ix t  and the accumulated water 

consumption ( )d
im t  in period d of reservoir i, d = 0, 1, …, 

D-1, i = 1, 2, …, I. The control action A(t) at stage t includes 
discharge ( )iw t , spillage ( )is t , and consumption ( )iu t  of 
reservoir i, i = 1, 2, …, I. Note that the spillage does not 
generate energy and has no reward and the consumed water is 
used for agricultural irrigation and industrial and urban 
supplies, etc. 

Given the system state ( )X t  and control action ( )A t , the 
system dynamics at stage t is determined as follows: ∀ t = 0, 
1, …, T-1, i  = 1, 2, …, I 

[ ( ) ( )( 1) ( ) ( ) ) ]( ( )
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∀ d = 0, 1, …, D-1. 
 Eq. (1) depicts the water balance of the cascaded reservoirs, 
where ( )ix t  is the storage of reservoir i at time t and the 
initial storage (0)ix is given; ( )ir t  is the water release 
defined as 
 ( ) ( ) ( )i i ir t w t s t= + .  (3) 

iU  is the set of direct upstream reservoirs of reservoir i. The 
inflows to reservoir i involves three parts: the water discharge 
and the water recession from consumption of upstream 
reservoirs and the natural inflows. jλ  is the recession ratio of 
reservoir j which indicates the portion of consumption 
coming back to the water system. ( )i tξ  is the natural inflow 
of reservoir i at time t, which is a random variable with given 
distribution. 
 Eq. (2) shows the accumulated consumption of each period, 
and we set the initial state (0) 0d

im =  for d = 0, 1, …, D-1. 
 Remark 1: The water recession, i.e., portion of water 
consumption comes back and becomes a part of inflows to 
downstream reservoirs, is considered as shown in Eq. (1).    

The feasible action set at stage t with state ( )X t  is 
constrained by the following: 
 ( )i i ix x t x≤ ≤ ,  (4) 

 0 ( )i iw t w≤ ≤ ,  (5) 
 ( ) 0is t ≥ ,  (6) 

 ( )
i

j i
j

tr φ
∈

≥∑
U

,  (7) 

for i = 1, 2, …, I. Eq. (4), (5) and (6) are the physical limits for 
the storage, discharge, spillage, and consumption, and (7) is 
required for the minimum inflows to all the hydro plants to 
prevent water cutout, where iφ  is a given lower bound of 
controlled inflows to reservoir i every stage. 
 Remark 2: The locational release constraints are 
considered in order to prevent water cutout, as (7) shows.    

Reward structure and objective function are considered as 
follows. One step reward function at stage t is the benefit 
from hydro generation for t = 0, 1, …, T-1: 
 2( , )t t tt t t t tf X A a P b P c= + +  (8) 
where the benefit function is a quadratic polynomial with 
respect to the total hydro generation pt in stage t [31]. The 
hydro generation function is 

 
1

(( ))
I

i i
i

w tp t ρ
=

= ∑ ,  (9) 

where ( )iw t  is the water discharge from reservoir i in stage t; 

iρ  is a coefficient representing the efficiency of reservoir i.  
 The terminal reward at stage T considers the penalty cost 
for the violations of seasonal demands for water irrigation and 
urban supply and the annual consumption constraint: 
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where M is a sufficient large number indicating the penalties; 
1(•) is an indicator function which equals to 1 (or 0) if logical 
expression (•) is true (or false); ( )d

im T  depicts the total water 
consumption of reservoir i within season d according to (2), 
i.e., 
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where i = 1, 2, …, I, d = 0, 1, …, D-1. Eq. (10) indicates the 
penalty for the violation of seasonal demands for water 
irrigation and urban supply, where d

iu  is a constant denoting 
the seasonal demand for water consumption at reservoir i in 
demand-period d. Eq. (11) is the penalty for violation of the 
annual consumption constraint, where u  is a given upper 
bound of the annual water consumption in the province within 
horizon T. The value of d

iu  and u  are given based on the 
governmental regulations and we have  

 
1

1 0

I D

i d

d
iu u

−

= =

≤∑∑ .  (13) 

Remark 3: This paper considers the seasonal demands of 
water in each reservoir for the irrigation and urban supplies, 
so that the requirement for water consumption is guaranteed.  
Note that this constraint is reflected by the penalty in (10).   
 Remark 4: This paper considers the annual consumption 
constraint by setting up an upperbound of water consumption 
of the province in one year, in order to balance the usage of 
limited water resources among different provinces. Note that 
this constraint is reflected by the penalty in (11). This 
constraint is practical and important nowadays. For example, 
Chinese government introduces this constraint for Yellow 
River in north China, in consideration of the limited water 
resources there.                    
 The objective considered in this paper is to maximize the 
expected total reward over finite horizon T 
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where initial state 0X  is given; scheduling policy π  consists 
of a series of decision rules which are mappings from the state 
space to the action space, i.e., 
 0 1 1( , , , )Tπ π π π −= ;  (15) 
 ( ( ))( , ,) 0, 1tA X t t Tt π ∀= = − . (16) 

To summarize, in this section, we formulated the water 
resources planning with locational release and annual 
consumption constraints as MDP with continuous states and 
actions. In this way, we not only capture the nonlinear and 
stochastic characteristics of this problem, but also avoid the 
curse of dimensionality of traditional discrete formulation.  

III. SENSITIVITY BASED APPROACH FOR CONTINUOUS MDP 
Sensitivity-based approaches are introduced to optimize 

MDPs with discrete state and action spaces in [19][20] and 
MDPs with continuous state and action spaces in [23], 
combining with ideas of perturbation analysis (PA) [14][21] 
and reinforcement learning [22]. However, existing results 
limit to MDPs with infinite-horizon average-cost and rely on 
the ergodic assumption of stationary policies [16][17], so that 
they are not applicable to problems with the finite-horizon 
and the total-cost.  

We have developed a sensitivity based approach for finite 
horizon MDPs with discrete state and action spaces in our 
previous work [24][25][28]. In this section, we will extend 
the main result to the finite-horizon MDPs with continuous 
state and action spaces in order to solve the water resources 
planning problem formulated in the previous section. 

A. Finite-horizon Markov Chain with Continuous States 
Consider a discrete-time Markov chain  

 : { (0), (1), , ( 1), ( )}X X X T X T= −X , (17) 

with finite horizon T and a continuous state space n=X . Let 
B  be the σ -field of n  containing all the Lebesgue 
measureable sets. Given state ( ) nX t x= ∈  at time t, 

0, 1, , 1t T= − , the probability that the next state lie in a set 
B ∈B  at time t+1 can be denoted as a state transition 
function ( | )tP B x  which satisfies  

 ( | ) ( | ) 1,
n

n n
t tP x P dy x x= = ∀ ∈∫ . (18) 

Without further specification, we assume that all sets and 
functions discussed in this paper are Lebesgue measurable. 
Define a linear right operator tP  corresponding to ( | )tP B x  
on the function space: 
 ( ) : ( ) ( | )

nt th x h y P dy x= ∫P , (19) 

where ( )h y  is any measurable function. The product of any 
two operators tP  and '

tP  is defined as: ,x B∀ ∈ ∈X B , 

 ' '( ( | ) ( | ))( | )
nt t ttP B y P dy xB x = ∫P P . (20) 

A probability measure ( )Bν  itself can be viewed as a 
special state transition function ( | )B xν  which takes the 

same value ( )Bν  for all nx ∈ . Thus, any probability 
measure ( )Bν  can be viewed as an operator ν . The state 
distribution at time t is denoted as tβ . With given initial state 
distribution 0β , it can be obtained as 
 1 1, 1, 2, ,t t t t Tβ β − − ∀ == P . (21) 
Let ( )tf x  be a cost function at time t with respect to state x. 
The total cost of the Markov chain (17) over finite horizon T 
is 
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( ( )) | (( ) 0)
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x E f X t X xη
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⎧ ⎫=⎨
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B. Potentials and Performance Sensitivity Formula 
The potential (also known as relative value function [13] or 

cost-to-go function [15]) for state x at time t is obtained by 

 
1

( ) ( ),
( )( ) 0, , 1( ), .

T T

t t t t

g x f x
g x gx f x t T+

=
+= ∀ = −P

 (23) 

Let ( , )t tP f  and ' '( , )t tP f  be the transition functions and 
performance functions at time t of two Markov chains with 
the same state space n=X . Let , ,t tgη β  and ' ', ,t tgη β′  be 
their corresponding total performances, potential functions, 
and the state distribution at time t, respectively. Then we have 
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the following results. 
Lemma 1: The total performance difference formula for 

the above two Markov chains is 

 ( ) ( )
1

' ' '
1

0

T

t t t t t t
t

f f gη η β
−

+
=

⎡ ⎤′ − = − + −⎣ ⎦∑ P P . (24) 

Proof: In an extended journal version of this paper due to the 
page limits.                         

Lemma 1 provides a neat way to calculate the difference of 
the total performance between two Markov chains. It has a 
salient feature to separate the efforts from these two chains so 
that one chain places its influence on the total difference 
through state distribution '

tβ  while the other places its 
influence on the potential function 1tg + .  

From Lemma 1, the total performance derivative formula 
can be derived as follows. Suppose the transition function and 
performance function depend on parameters ( )tθ , t = 0, 1, …, 

T-1, and are denoted as tPθ  and tf
θ , respectively. Denoting 

the operator as t
θP , we have the following result.  

Theorem 1: The total performance derivative with respect 
to ( )tθ , t = 0, 1, …, T-1, is  

 1( ) ( ) ( )
t

t t
tfg

t t t

θ θ
θη β

θ θ θ+

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂∂
= +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

P
. (25) 

Proof: From (24) in Lemma 1, (25) is easily proved.      
 In Theorem 1, the performance derivative can be obtained 
by simulating the system since it only depends on the original 
parameters ( )tθ , t = 0, 1, …, T-1. This is consistent with the 
theory of perturbation analysis [21][16] that we can obtain 
local information including the gradient by observing and 
analyzing a sample path of the original system. Therefore, 
gradient based policy optimization approach (explained in the 
next subsection) can be carried out for the finite horizon total 
cost MDPs with continuous states and action spaces.  

C. Gradient-based Performance Optimization 
With performance derivative formula (25), gradient-based 

policy optimization approach is developed in this subsection.  
Algorithm 1: (The gradient-based optimization approach). 

Step 1: (Initialization). Randomly generate an initial policy 
with parameter 0 ( )tθ  for t = 0, 1, …, T-1, (or use the practical 
policy or heuristic policy as the starting point), and set the 
iteration number k = 0. 
Step 2: (Policy evaluation). Let ( )k tθ , t = 0, 1, …, T-1, be the 
parameters in iteration k. Do the simulation under parameter 

( )k tθ  and obtain the potential functions according to (23). 

Step 3: (Policy improvement). Obtain gradient ( )( )k tη θ∇  
through the performance derivative formula (25). Update the 
policy according to the gradient-based methods in [26] with 
steepest descent direction and diminishing step size:  
 1( ) ( ) ( ( ))k k k kt t tθ θ α η θ+ = − ∇ , (26) 
where step size 1 /k kα = . 

Step 4: (Stopping criteria). If || ( ( )) ||k tη θ∇ ≤ ε  for t = 0, 1, …, 
T-1, stop; otherwise, let k = k + 1 and go to step 2. 

Algorithm 1 has the following property. 
Proposition 1: Algorithm 1 converges to a stationary point 

of the total performance. 
Proof: Since the step size 1 /k kα = , we have lim 0k

k α→∞ =  

and 
0

k
k

α∞

=
= ∞∑ . From [26], Proposition 1 is proved.      

Algorithm 1 provides a systematic and general way to 
optimize the parameterized policies and it can be carried out 
online. In online version, to evaluate a policy, we estimate 
potentials by averaging samples over multiple sample paths. 

IV. NUMERICAL EXAMPLES 

A. Optimization for Water Resources Planning Policies 
The approach derived in Section III is applied to solve the 

water resources planning problem. Suppose the natural inflow 
to the reservoir i at time t, ( )i tξ , has a normal distribution 
with a mean of ( )i tμ  and a standard deviation of ( )i tσ , and 

truncated within [ ( ), ( )]i it tξ ξ . To simplify the discussion, we 

assume that the natural inflows to different reservoirs are 
independent (this might not be true in consideration of the 
geography and climate relations among reservoirs. But it is 
beyond our specialties and we use this assumption as a 
starting point to simplify the discussion here). However, our 
results are not limited to the independency and the normal 
distribution. In fact, the approach explained in this section is 
applicable as long as the PDF (probability density function) is 
known. We let  
 1 2( ) ( ( ), ( ), , ( ))T

It t t tμ μ μ μ= , (27) 
and 
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Given system state ( )X t  and action ( )A t  at stage t, we 
can obtain the distribution of state ( 1)X t +  at stage t+1 as 
follows. According to the dynamic in (1), given system state 

( )ix t  and actions ( )iu t , ( )iw t , and ( )is t  for i = 1, 2, …, I, 

( 1)ix t +  is also a normal distribution with a mean of ( )x
i tμ , a 

standard deviation of ( )i tσ , and truncated within the interval 

of [ ( ) ( ), ( ( )])i i i it t t tξ ξΔ + Δ + , where 

 ( ) ( ) ( )x
i i it t tμ μ+= Δ ,  (29) 

 ( ) ( ) ( ) [ ( ) ( )( ])
i

i i jji
j

i jx t u t r t rt t u tλ
∈

− − +Δ += ∑
U

. (30) 

According to the dynamic in (2), ( 1)d
im t +  is deterministic 

given state ( )d
im t  and action ( )iu t  for i = 1, 2, …, I. Then, 

according to (19), we have  
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Based on (31), for i = 1, 2, …, I, we obtain 
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and 
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where ( 1)i iy x t= + ; iD  is the set of direct downstream 
plants of hydro plant i, for i = 1, 2, …, I.  

Given the release i
tr  for i = 1, 2, …, I, t = 0, 1, …, T-1, the 

optimal allocation between discharge and spillage is 
 { },min , ii i i i i

t t t t tr w rw s w= = − , (38) 
which can be proved according to the reward structure in (8)
and (9). Therefore, we only need to derive the performance 
derivatives with respect to i

tu  and i
tr  for i = 1, 2, …, I, t = 0, 

1, …, T-1. According to (8) and (9), we have 
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tr w> . 

Therefore, from these sensitivity formulas (36) - (41), 
together with Theorem 1, we can apply the sensitivity-based 
optimization approach, i.e., Algorithm 1, to solve this water 
resources planning problem. 

B. Numerical Tests 
We compare the results from the sensitivity-based 

optimization with the traditional backward induction method 
based on discretization of the state space and action space. 
Here we randomly give an initial policy as the starting point, 
and then use Algorithm 1 developed in Section III to optimize 
it. The comparison results of the expected total rewards and 
CPU time are shown in Table I. All the models and 
algorithms are implemented in Matlab and all runs are 
performed on a Windows PC with 2.93 GHz CPU and 2.00 
GB RAM. 

 
TABLE I. COMPARISON  WITH DISCRETIZED BACKWARD INDUCTION 

Case
# 

Sensitivity 
Reward 

Sensitivity 
CPU (s) 

Backward 
Induction 
Reward 

Backward 
Induction 
CPU (s) 

1 9805.63  20.52  4205.50  441.35  
2 3904.69  20.75  2709.94  782.89  
3 17319.31 277.95  11752.77 823.64  
4 5265.79  177.45  2374.13  912.50  
5 6384.18  281.40  3213.27  11104.58 
6 10899.75 769.70  9663.22  11689.85 
7 3928.16  360.32  3032.81  19496.53 
8 4259.87  86.28  2263.57  19748.62 
9 8252.87  17.12  6471.12  22629.96 
10 14664.88 17.52  12809.29 22762.62 

 
 The testing results illustrate that the sensitivity-based 
optimization approach is effective and efficient when solving 
the water resources planning problem. Firstly, the 
sensitivity-based optimization approach is more efficient than 
the backward induction method, and the tests show that it 
needs less than 1/10 computational efforts on average. The 
reason for the time-consuming backward induction is due to 
the curse of dimensionality when discretizing the state and 
action spaces. Secondly, the results obtained from the 
sensitivity-based optimization can on average improve the 
expected total rewards by more than 3/5, and in some cases, it 
can double the total rewards, in comparison with the 
backward induction. The backward induction does not 
perform well since it has to deal with the dilemma of the 
approximation precision and computational efforts. Only in 
cases #6 and #10, the results of these two methods are close, 
since the discretization points in the backward induction 
happens to be near the optimal solutions.  
 

TABLE II. COMPARISON WITH THE SDDP METHOD 
Case

# 
Sensitivity 

Reward 
Sensitivity 

CPU (s) 
SDDP 

Reward 
SDDP 

CPU (s) 
1 9805.63  20.52  9054.76 332.29 
2 3904.69  20.75  4328.65 637.38 
3 17319.31 277.95  16211.89 643.94 
4 5265.79  177.45  3582.81 709.68 
5 6384.18  281.40  6889.84 3692.24 
6 10899.75 769.70  9458.86 1604.28 
7 3928.16  360.32  4176.30 1665.66 
8 4259.87  86.28  4615.28 1685.61 
9 8252.87  17.12  7933.20 3656.18 
10 14664.88 17.52  14296.42 3843.95 
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 We also compare our approach to stochastic dual dynamic 
programming (SDDP), an important class of methods for 
solving hydro-thermal planning problems [29]. The results 
are compared in Table II, and they show that the SDDP 
method needs more computational efforts on average than the 
sensitivity-based optimization approach. The reason is that 
the discretization of the probability space is still necessary in 
SDDP because it captures the problem randomness with 
scenarios [29], and the total number of scenarios grows 
exponentially with respect to the problem scale. 

V. CONCLUSIONS 
In this paper, the finite-horizon MDP with continuous state 

and action spaces is introduced to depict the stochastic nature 
of system dynamics and the coupling of hydraulic constraints 
of the long term water resource planning problem. The 
governmental regulations on the annual water consumption 
and release are formulated by introducing the accumulated 
state variables in the MDP. A sensitivity based optimization 
approach is developed for solving the finite-horizon MDP 
with continuous state and action spaces. A performance 
derivative for the finite horizon continuous MDP is derived 
and a gradient-based algorithm is developed to solve the 
MDP problem. The salient feature of the new method is that 
the performance is improved systematically and there is no 
need to determine the difficult trade-off between the 
computational accuracy and efficiency. It is demonstrated 
that the model proposed in the paper can effectively capture 
the governmental regulations on annual water consumption 
and release. Numerical testing results show that the 
sensitivity based approach is effective and efficient for 
solving the water resources planning problem. This approach 
is also applicable for solving other MDP problems with 
practical sizes. Stochastic system demands and the time 
dependency of natural inflows will be considered in our 
future work. 

ACKNOWLEDGMENT 
The authors would like to thank Prof. Yu-Chi Ho, Prof. 

Xi-Ren Cao, Prof. Qianchuan Zhao, and the anonymous 
reviewers for their valuable advices and suggestions. 

REFERENCES 
[1] M. Christoforidis, M. Aganagic, B. Awobamise, S. Tong, and A. F. 

Rahimi, “Long-Term/Mid-Term Resource Optimization of A 
Hydrodominant Power System Using Interior Point Method,” IEEE 
Transactions on Power Systems, Vol. 11( 1), pp.  287-294, 1996. 

[2] L. Martinez and S. Soares, “Comparison Between Closed-Loop and 
Partial Open-Loop Feedback Control Policies in Long Term 
Hydrothermal Scheduling,” IEEE Transactions On Power Systems, Vol. 
17(2), pp. 330-336, 2002. 

[3] A.H. Mantawy, S.A. Soliman, and M.E. El-Hawary, “The Long-Term 
Hydro-Scheduling Problem - A New Algorithm,” Electric Power 
Systems Research, Vol. 64(1), pp. 67-72, 2003. 

[4] R. Fuentes-Loyola and V. H. Quintana, “Medium–Term Hydrothermal 
Coordination by Semidefinite Programming,” IEEE Transactions on 
Power Systems, Vol. 18, No. 4, November 2003. 

[5] M.-Y. Tu, N.-S. Hsu, and W. W.-G. Yeh, “Optimization of Reservoir 
Management and Operation with Hedging Rules,” Journal of Water 
Resources Planning and Management, Vol. 129(2), pp. 86-97, 2003. 

[6] R. Oliveira and D.P. Loucks, “Operating rules for multi-reservoir 
systems,” Water Resources Research, Vol. 33(4), pp. 839-852, 1997. 

[7] B.F. Lamond and A. Boukhtouta, “Neural Approximation for the 
Optimal Control of a Hydroplant with Random Inflows and Concave 
Revenues,” Journal of Energy Engineering, Vol. 131(1), pp. 72-95, 
2005. 

[8] B.F. Lamond and A. Boukhtouta, “Optimizing Long-term 
Hydro-power Production Using Markov Decision Process,” 
International Transactions in Operational Research, Vol. 3, 1996. 

[9] T.W. Archibald, C.S. Buchanan, L.C. Thomas, and K.I.M. McKinnon, 
“Controlling multi-reservoir systems,” European Journal of 
Operational Research, Vol. 129(3), pp.  619-626 , 2001.  

[10] T.W. Archibald, K.I.M. McKinnon, and L.C. Thomas, “An aggregate 
stochastic dynamic programming model of multi-reservoir systems”, 
working paper, University of Edinburgh Department of Business, 1996. 

[11] A. Turgeon, “Decomposition Method for the Long-Term Scheduling of 
Reservoirs in Series,” Water Resources Res. Vol. 17(6), pp. 1565-1570, 
1981. 

[12] A.J. Wood and B.F. Wollenberg, Power Generation Operation and 
Control, New York : J. Wiley & Sons, 1996. 

[13] M.L. Puterman, Markov Decision Process: Discrete Stochastic 
Dynamic Programming, John Wiley & Sons, Inc., New York, 1994. 

[14] X.-R. Cao, “A Unified Approach to Markov Decision Problems and 
Performance Sensitivity Analysis,” Automatica, Vol. 36, 771-774, 
2000. 

[15] D.P. Bertsekas, Dynamic Programming and Optimal Control, Belmont, 
Mass. : Athena Scientific, 2005. 

[16] X.-R. Cao, “Stochastic Learning and Optimization - a Sensitivity-Based 
Approach”. Springer, 2007. 

[17] Y. Zhao, Q. Zhao, Q.-S. Jia, X. Guan, X.-R. Cao, “Event-Based 
Optimization for Dispatching Policies in Material Handling Systems of 
General Assembly Lines”, In: Proceeding of the 47th IEEE Conference 
on Decision and Control, pp. 2173-2178, 2008. 

[18] E. Ni, X. Guan, R. Li, “Scheduling Hydrothermal Power Systems with 
Cascaded and Head-Dependent Reservoirs,” IEEE Transactions on 
Power Systems, Vol. 14(3), pp. 1127-1132, 1999. 

[19] X.-R. Cao and H. Chen, “Perturbation realization, potentials, and 
sensitivity analysis of Markov processes,” IEEE Transactions on 
Automatic Control, Vol. 42, no. 10, pp. 1382–1393, 1997. 

[20] X.-R. Cao, “From perturbation analysis to Markov decision processes 
and reinforcement learning,” Discrete Event Dynamic Systems, vol. 13, 
no. 1, pp. 9–39, 2003. 

[21] Y.-C. Ho and X.-R. Cao, Perturbation analysis of discrete event 
dynamic systems. Boston : Kluwer Academic Publishers, 1991. 

[22] R. Sutton and A. Barto, Reinforcement learning: An introduction. MIT 
press, 1998. 

[23] K.-J. Zhang, Y.-K. Xu, X. Chen and X.-R. Cao, Policy Iteration Based 
Feedback Control, Automatica, Vol. 44, pp. 1055-1061, 2008. 

[24] Y. Zhao, Q. Zhao, and X. Guan, “Stochastic Optimal Control for A 
Class of Manufacturing Systems Based on Event-Based Optimization,” 
the 3rd Japan-China Joint Workshop on Control, Fukuoka, Japan, 18 
August, 2009. 

[25] Y. Zhao, Q. Zhao, and X. Guan, “Event-Based Optimization for 
Finite-Horizon Total-Cost Markov Decision Processes,” under review. 

[26] D.P. Bertsekas, Nonlinear programming, Athena Scientific, 1999. 
[27] S. Yakowitz, “Dyanmic Programming Applications in Water 

Resources,” Water Resources Research, Vol. 18(4), pp. 673-696, 1982. 
[28] Y. Zhao, X. Chen, Q.S. Jia, X. Guan, S. Zhang, Y. Jiang, “Long-term 

Scheduling for Cascaded Hydro Energy Systems with Annual Water 
Consumption and Release Constraints,” IEEE Transactions on 
Automation Science and Engineering, to appear, 2010. 

[29] M.V.F. Pereira, and L.M.V.G.Pinto, “Multi-stage Stochastic 
Optimization Applied to Energy Planning,” Mathematical 
Programming, Vol. 52(1), pp. 359-375, 1991. 

[30] Z. Yu, F. T. Sparrow, and B. H. Bowen, “A New Long-Term Hydro 
Production Scheduling Method for Maximizing the Profit of 
Hydroelectic Systems,” IEEE Transactions on Power Systems, Vol. 
13(1), pp. 66-71, 1998. 

[31] F.R. Forsund, Hydropower economics, International Series in 
Operations Research & Management Science, Springer, 2007. 

3937


